Using AI to Analyze Large Amounts of Biological Data

Researchers at the University of Missouri are applying a form of artificial intelligence (AI) - previously used to analyze how National Basketball Association (NBA) players move their bodies - to now help scientists develop new drug therapies for medical treatments targeting cancers and other diseases.

The type of AI, called a graph neural network, can help scientists with speeding up the time it takes to sift through large amounts of data generated by studying protein dynamics. This approach can provide new ways to identify target sites on proteins for drugs to work effectively, said Dong Xu, a Curators' Distinguished Professor in the Department of Electrical Engineering and Computer Science at the MU College of Engineering and one of the study's authors.

"Previously, drug designers may have known about a couple places on a protein’s structure to target with their therapies," said Xu, who is also the Paul K. and Dianne Shumaker Professor in bioinformatics. "A novel outcome of this method is that we identified a pathway between different areas of the protein structure, which could potentially allow scientists who are designing drugs to see additional possible target sites for delivering their targeted therapies. This can increase the chances that the therapy may be successful."

Xu said they can also simulate how proteins can change in relation to different conditions, such as the development of cancer, and then use that information to infer their relationships with other bodily functions.

"With machine learning we can really study what are the important interactions within different areas of the protein structure," Xu said. "Our method provides a systematic review of the data involved when studying proteins, as well as a protein’s energy state, which could help when identifying any possible mutation’s effect. This is important because protein mutations can enhance the possibility of cancers and other diseases developing in the body."

Zhu J, Wang J, Han W, Xu D.
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations.
Nat Commun. 2022 Mar 29;13(1):1661. doi: 10.1038/s41467-022-29331-3

Most Popular Now

AI Harnesses Tumor Genetics to Predict T…

In a groundbreaking study published on January 18, 2024, in Cancer Discovery, scientists at University of California San Diego School of Medicine leveraged a machine learning algorithm to tackle one...

Northern Care Alliance Deploys Digital P…

The trust's Oldham laboratory has completed technical go-live, with its Salford site also set to follow. Collectively the laboratories provide a wide range of general and specialist pathology services that...

American College of Radiology Releases J…

The American College of Radiology® (ACR®), working in close collaboration with four other radiology societies from around the world, have issued a joint statement on the development and use of...

Nine Tasks and One Big Challenge for Sha…

Opinion Article by Mark Hindle, vice president EMEA, Orion Health,. It's going to be a busy year in the shared care records space. NHS leaders, ShCRs and their suppliers are going...

Autonomous Synthesis Robot Uses AI to Sp…

Chemists of the University of Amsterdam (UvA) have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human...

AI in Personalized Cancer Medicine: New …

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New...

Paper Calls for Patient-First Regulation…

Ever wonder if the latest and greatest artificial intelligence (AI) tool you read about in the morning paper is going to save your life? A new study published in JAMA...

AI can Predict Brain Cancer Patients…

Artificial Intelligence (AI) can predict whether adult patients with brain cancer will survive more than eight months after receiving radiotherapy treatment. The use of the AI to successfully predict patient outcomes...

Max Planck Institute for Informatics and…

The Max Planck Institute for Informatics and Google deepen their strategic research partnership. With additional financial support from the U.S. IT company, the "Saarbrücken Research Center for Visual Computing, Interaction...

JMIR Medical Informatics Invites Submiss…

JMIR Publications has announced a new section titled, "AI Language Models in Health Care" in JMIR Medical Informatics. This leading peer-reviewed journal is indexed in PubMed and has a unique...

DMEA nova Award: Wanted - Visionary Solu…

9 - 11 April 2024, Berlin, Germany. The DMEA nova Award is being presented at DMEA 2024 for the first time. The award honours a digital health startup for an outstanding...

Could ChatGPT Help or Hurt Scientific Re…

Since its introduction to the public in November 2022, ChatGPT, an artificial intelligence system, has substantially grown in use, creating written stories, graphics, art and more with just a short...