Using AI to Analyze Large Amounts of Biological Data

Researchers at the University of Missouri are applying a form of artificial intelligence (AI) - previously used to analyze how National Basketball Association (NBA) players move their bodies - to now help scientists develop new drug therapies for medical treatments targeting cancers and other diseases.

The type of AI, called a graph neural network, can help scientists with speeding up the time it takes to sift through large amounts of data generated by studying protein dynamics. This approach can provide new ways to identify target sites on proteins for drugs to work effectively, said Dong Xu, a Curators' Distinguished Professor in the Department of Electrical Engineering and Computer Science at the MU College of Engineering and one of the study's authors.

"Previously, drug designers may have known about a couple places on a protein’s structure to target with their therapies," said Xu, who is also the Paul K. and Dianne Shumaker Professor in bioinformatics. "A novel outcome of this method is that we identified a pathway between different areas of the protein structure, which could potentially allow scientists who are designing drugs to see additional possible target sites for delivering their targeted therapies. This can increase the chances that the therapy may be successful."

Xu said they can also simulate how proteins can change in relation to different conditions, such as the development of cancer, and then use that information to infer their relationships with other bodily functions.

"With machine learning we can really study what are the important interactions within different areas of the protein structure," Xu said. "Our method provides a systematic review of the data involved when studying proteins, as well as a protein’s energy state, which could help when identifying any possible mutation’s effect. This is important because protein mutations can enhance the possibility of cancers and other diseases developing in the body."

Zhu J, Wang J, Han W, Xu D.
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations.
Nat Commun. 2022 Mar 29;13(1):1661. doi: 10.1038/s41467-022-29331-3

Most Popular Now

NHS Lanarkshire Launches Digital pre-Ope…

NHS Lanarkshire has launched an electronic pre-operative assessment platform to support the delivery of next generation care pathways for its patients. Working with Buddy Healthcare, the hospital Board has launched "ELSIE...

ANregiomed Puts Siemens Healthineers and…

This new technology partnership kicked off September 1, 2022, marks the first time that Siemens Healthineers is collaborating with a municipal medical service provider to implement a concept it has...

Consortium to Develop Fully Implantable …

A research consortium led by the UMC Utrecht Brain Center (the Netherlands) in collaboration with Graz University of Technology (Austria), the Wyss Center for Bio and Neuroengineering (Switzerland) and CorTec...

AI Model Outperforms Clinicians in Diagn…

An artificial-intelligence (AI) model built at Mass Eye and Ear was shown to be significantly more accurate than doctors at diagnosing pediatric ear infections in the first head-to-head evaluation of...

Creating the Digital Health Workforce of…

How are trusts and health tech suppliers going to find the people they need to develop deploy and optimise critical clinical information systems in the future? Highland Marketing's advisory board...

AI Tool could Reduce Common Drug Side Ef…

Research led by the University of Exeter and Kent and Medway NHS and Social Care Partnership Trust, published in Age and Ageing, assessed a new tool designed to calculate which...

Philips Foundation and RAD-AID Internati…

Philips Foundation, with its mission to provide access to quality healthcare for 100 million people a year in underserved communities by 2030, together with Philips and RAD-AID International, today announced...

New Tool Overcomes Major Hurdle in Clini…

Harvard Medical School scientists and colleagues at Stanford University have developed an artificial intelligence (AI) diagnostic tool that can detect diseases on chest X-rays directly from natural-language descriptions contained in...

CHOP Study Explores the Use of Telemedic…

Researchers from the Epilepsy Neurogenetics Initiative (ENGIN) at Children's Hospital of Philadelphia (CHOP) found that across nearly 50,000 visits, patients continued to use telemedicine effectively even with the reopening of...

A Smartphone's Camera and Flash could He…

First, pause and take a deep breath. When we breathe in, our lungs fill with oxygen, which is distributed to our red blood cells for transportation throughout our bodies. Our bodies...