COVID-19 High Performance Computing Consortium Enters New Phase Focused on Helping Researchers to Identify Potential Therapies for Patients

IBMThe COVID-19 High Performance Computing (HPC) Consortium, a unique public-private effort to make supercomputing power available to researchers working on projects related to COVID-19, announced that it has entered into a new phase of operation focused on helping researchers to identify potential near term therapies for patients afflicted by the virus.

In this new phase, the Consortium plans to sharpen its focus on research projects that hold the potential to help improve patient outcomes within a six-month timeframe. This transition is due in part to the fact that there is now a greater volume of COVID-19 data available, creating more possibilities to potentially help patients than when the Consortium was launched in March 2020.

Created by IBM, The White House, and the US Department of Energy, the HPC Consortium brings together computing resources, software and services to help researchers everywhere better understand COVID-19, its treatments and potential cures. The Consortium has 43 members and has received more than 175 research proposals from researchers in more than 15 countries.

In its second phase of operation, the Consortium is particularly, though not exclusively, interested in projects focused on:

  • Understanding and modeling patient response to the virus using large clinical datasets
  • Learning and validating vaccine response models from multiple clinical trials
  • Evaluating combination therapies using repurposed molecules
  • Epidemiological models driven by large multi-modal datasets

"In just eight months, we've brought together an unprecedented scale of computing power to support COVID-19 research, and dozens of projects have already utilized these resources," said Dario Gil, Director of IBM Research. "At this stage, the Consortium partners believe that our combined computing resources now hold the potential to benefit patients in the near-term, as well as offering the potential for longer-term scientific breakthroughs."

"The Department of Energy is proud to play a significant role towards ending COVID-19," said Under Secretary for Science Paul Dabbar. "The second phase of the COVID-19 High Performance Computing Consortium can potentially provide tangible results to those affected by the virus, and we look forward to delivering these results to the American people."

Since its launch, the HPC Consortium has attracted new members from industry, government and academia worldwide. As a result, the Consortium's computing capacity has almost doubled to 600 petaflops, from 330 petaflops in March. Together, the Consortium has helped support more than 90 research projects including:

  • Understanding How Long Breath Droplets Linger: This research from a team at Utah State University simulated the dynamics of aerosols indoors, offering insight into how long breath droplets linger in the air. They found that droplets from breathing linger in the air much longer than previously thought, due to their small size when compared to droplets from coughing and sneezing.
  • Understanding How COVID-19 Impacts Different Populations Research from a team at Iowa State University on so-called orphan genes could help better understand why African Americans are more vulnerable to COVID-19. They found that a little-studied gene, F8A2, is expressed more in African Americans than European Americans in every tissue studied. Since the gene is believed to be involved in endosome mobility, this could affect COVID-19 infection.
  • Researching Drug Repurposing For Potential Treatments: A project from a team at Michigan State University screened data from about 1,600 FDA-approved drugs to see if there are possible combinations that could help treat COVID-19. They found promise in at least two FDA-approved drugs: proflavine, a disinfectant against many bacteria, and chloroxine, another antibacterial drug.
  • Examining the Potential of Indian Medicinal Plants: Research from India's Novel Techsciences screened plant-derived natural compounds from 55 Indian medicinal plants to identify compounds with anti-viral properties that could be used against eight SARS-CoV-2 proteins. They found that phytochemicals from plants Withania somnifera and Azadirachta indica show multi-potency against different coronavirus proteins, meaning that they could help fight multi-drug resistance that may arise as the virus evolves

About the HPC Consortium

The COVID-19 High Performance Computing (HPC) Consortium, https://covid19-hpc-consortium.org, is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the U.S. Department of Energy and IBM (NYSE: IBM) to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...