MIE 2014: Call for Submissions

31 August - 03 September 2014, Istanbul, Turkey.
The European Federation for Medical Informatics (EFMI) and the Turkish Medical Informatics Association (TurkMIA), annonced the 25th European Medical Informatics Conference - MIE2014 - which will be held in Istanbul, Turkey. Keynotes, scientific sessions, thematic workshops and panels, short communications and tutorials will constitute the traditional backbone of the conference. In parallel, special "partnership for innovation" tracks and round tables will be organized to get the best from the synergy between the scientific/industrial/political world. Various kinds of contributions are solicited and welcome in order to provide MIE2014 attendees a stage for active participation.

In addition MIE2014 will offer national, regional and European projects and initiatives the opportunity to demonstrate their results in the "Village of the Future" that will be hosted during the conference.

The MIE2014 Scientific Programme Committee (SPC) invites contributions in the form of:

  • Full papers
  • Posters
  • Panels
  • Workshops
  • Short communications
  • Tutorials

Important Dates
Open of call for submissions: November 1, 2013
Submission deadlines: January 31, 2014
Notification of acceptance: April 1, 2014
Final submission of camera ready papers: April 31, 2014
Early bird registration: May 10, 2014

The conference addresses, but are not limited to, the following categories and themes:
Methodology (Qualitative and Quantitative)

  • Information and Knowledge Representation
  • Information and Knowledge Processing
  • Empirical Research Methodologies

Applications (Systems, Goals, Problems, Policies)

  • Improved healthcare through health informatics
  • Health-care service delivery
  • Policy, Financing and Stewardship
  • Research and Education
  • Specific Topics
A more comprehensive list of Categories, Themes and Topics:
A Methodology (Qualitative and Quantitative)
A.1 Information and knowledge representation

  • A.1.1 Terminologies, Vocabularies, Ontologies (e.g. SNOMED, ICD 10, ICF, ICNP, LOINC)
  • A.1.2 Process models, Information models, Data models (e.g. workflows, databases)
  • A.1.3 Knowledge representation incl. images, video, audio (e.g.guidelines, protocols)
  • A.1.4 Visualization
  • A.1.5 Other

A.2 Information and Knowledge Processing

  • A.2.1 Information storage and retrieval
  • A.2.2 Natural Language processing
  • A.2.3 Data Mining
  • A.2.4 Speech Recognition
  • A.2.5 Reasoning and Decision Theory
  • A.2.6 Advanced Algorithms
  • A.2.7 Software Engineering Methodologies
  • A.2.8 Human Computer Interaction
  • A.2.9 Computer Supported Collaborative Work
  • A.2.10 Biosignal processing
  • A.2.11 Other
A.3 Empirical Research Methodologies
  • A.3.1 Need and Requirement Analyses
  • A.3.2 Evaluation Studies (incl. Experiments, Social, Organizational studies)
  • A.3.3 Cognitive Studies
  • A.3.4 Usability studies
  • A.3.5 Economic Studies
  • A.3.6 Other

B Applications (Systems, Goals, Problems, Policies)
B.1 Improved healthcare through health informatics - Core topic of MIE 2014

  • B.1.1 Evaluation of benefits for health informatics
  • B.1.2 Empowering Patient - Healthcare Provider - Caregiver Interaction
  • B.1.3 Social Networking for health
  • B.1.4 Health information for the Public
  • B.1.5 Effectiveness of just in time information for the care process
  • B.1.6 Continuity of information for continuity of care
  • B.1.7 Cross-Border Applications
  • B.1.8 Accessibility and Usability of Heath IT
  • B.1.9 Support for people with special needs and aging society
  • B.1.10 Integrated health care delivery
  • B.1.11 Translational research
  • B.1.12 Other

B.2 Healthcare service delivery

  • B.2.1 Electronic Health and Patient Records
  • B.2.2 Electronic Prescription and Order Entry
  • B.2.3 Computer Aided diagnosis Systems
  • B.2.4 Computer Assisted Medical Procedures (e.g. assisted surgery, robotics, rehabilitation)
  • B.2.5 Clinical Decision Support Systems
  • B.2.6 Clinical Guidelines and Protocols
  • B.2.7 Systems to support nurse's activities
  • B.2.8 Nursing Informatics
  • B.2.9 Telemedicine and telerehabilitation
  • B.2.10 Biosensors and Devices for eHealth Services
  • B.2.11 IT integrated solutions in Laboratory Medicine (e.g. Automation, control and efficiency of diagnostic processes)
  • B.2.12 Other

B.3 Health Information Management, Policy, Financing and Stewardship

  • B.3.1 Health Care policy Issues
  • B.3.2 Economic Aspects of Health ICT (e.g. cost-effectiveness analysis, cost-benefit/cost-utility analysis, resource utilization, epidemiology of cost and delivery of care )
  • B.3.3 System Implementation and Management
  • B.3.4 Security, Privacy, Ethics
  • B.3.5 Patient Safety, Medical Errors and Quality Assurance
  • B.3.6 Change management
  • B.3.7 National Health Policies and Informatics
  • B.3.8 Other

B.4 Research and Education

  • B.4.1 Enhancing Research and Trials
  • B.4.2 Supporting eHealth Research and Trials
  • B.4.3 Medical statistics in health informatics
  • B.4.4 Medical mathematics in health informatics
  • B.4.5 Knowledge Fusion and Semantic Web
  • B.4.6 Distance Learning and Digital Repository for Case-Based Reasoning
  • B.4.7 Education and training of Students, Professionals and Citizens
  • B.4.8 Evidence based health informatics
  • B.4.9 Other

B.5 Bioinformatics

  • B.5.1 Bioinformatics applications
  • B.5.2 Genomics and Proteomics
  • B.5.3 Structural Bioinformatics
  • B.5.4 Bioimaging
  • B.5.5 Pharmaceutical Applications
  • B.5.6 Systems Biology
  • B.5.7 Algorithms and Software Tools
  • B.5.8 Bioinformatics models, methods & algorithms
  • B.5.9 Immunoinformatics
  • B.5.10 Other

B.6 Specific Topics

  • B.6.1 Disease Management (healthcare personnel, patient and caregiver point of view)
  • B.6.2 Disease Surveillance and management of Outbreaks and Catastrophes
  • B.6.3 Crisis management of health issues in Natural Disasters and Catastrophes
  • B.6.4 Resource-poor Settings and Digital divide
  • B.6.5 Public Health

B.7 Free Topics

For further information, please visit:
http://www.mie2014.org

About EFMI
The European Federation for Medical Informatics (EFMI) was conceived at a meeting, assisted by the Regional Office for Europe of the World Health Organisation (WHO), in Copenhagen in September 1976. EFMI's objectives are:

  • to advance international co-operation and dissemination of information in Medical Informatics on a European basis;
  • to promote high standards in the application of medical informatics;
  • to promote research and development in medical informatics;
  • to encourage high standards in education in medical informatics;
  • to function as the autonomous European Regional Council of IMIA.

Most Popular Now

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...