EMERGE

EMERGE intends to model the typical behavior of elderly people with medical risks following an integrated approach that uses ambient and unobtrusive sensors, in order to detect deviations from typical behavior, reason on acute disorders, and prevent emergencies.

Ongoing demographical and social changes in most European countries will result in a dramatic increase in emergency situations and missions within the next years. Already today, 44% of emergency medical services (EMS) system resources are dedicated to patients over 70 years.

On the downside, this will result in higher costs for the EMS, which already have to cope with cost restrictions today, in substantially diminished service quality, or, in all probability, in both of these. Unfortunately, a high quality and affordable EMS in case of an emergency is an essential prerequisite for the independent life of elderly people in their preferred environment.

EMERGE tries to improve emergency assistance through early detection and proactive prevention. Ambient and unobtrusive sensing is used to enhance user acceptance. As a consequence, the quality of life for elderly people can increase. Costs for EMS can be leveraged for the elderly as well as for public health and society.

The main goal of EMERGE is to develop and implement a model for recurring behaviors and experiences of elderly people following an integrated approach in order to detect deviations from their typical behavior and to reason on acute disorders in their health condition.

The project's objectives are, therefore, to

  • identify and model the most promising application scenarios for integrated emergency assistance,
  • transfer the emergency model into an application design, identify and engineer suitable ambient information technology,
  • engineer an adequate system architecture and platform, and
  • validate the models and the engineered system in laboratory and field trials.

For further information, please visit:
http://www.emerge-project.eu

Project co-ordinator:
Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.

Partners:

  • Siemens Aktiengesellschaft (Germany)
  • Westpfalz-Klinikum GmbH (Germany)
  • Information Society Open to Impairments e-Isotis (Greece)
  • Bay Zoltan Alkalmazott Kutatasi Kozalapitvany (Hungary)
  • Art of Technology AG (Switzerland)
  • Europäisches Microsoft Innovations Center GmbH (Germany)
  • National Centre for Scientific Research "Demokritos" (Greece)
  • Medizinische Universität Graz (Austria)

Timetable: from 01/02/2007 - 31/10/2009

Total cost: € 4.012.690

EC funding: € 2.449.964

Instrument: STREP

Project Identifier: IST-2005-045056

Most Popular Now

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...