EMERGE

EMERGE intends to model the typical behavior of elderly people with medical risks following an integrated approach that uses ambient and unobtrusive sensors, in order to detect deviations from typical behavior, reason on acute disorders, and prevent emergencies.

Ongoing demographical and social changes in most European countries will result in a dramatic increase in emergency situations and missions within the next years. Already today, 44% of emergency medical services (EMS) system resources are dedicated to patients over 70 years.

On the downside, this will result in higher costs for the EMS, which already have to cope with cost restrictions today, in substantially diminished service quality, or, in all probability, in both of these. Unfortunately, a high quality and affordable EMS in case of an emergency is an essential prerequisite for the independent life of elderly people in their preferred environment.

EMERGE tries to improve emergency assistance through early detection and proactive prevention. Ambient and unobtrusive sensing is used to enhance user acceptance. As a consequence, the quality of life for elderly people can increase. Costs for EMS can be leveraged for the elderly as well as for public health and society.

The main goal of EMERGE is to develop and implement a model for recurring behaviors and experiences of elderly people following an integrated approach in order to detect deviations from their typical behavior and to reason on acute disorders in their health condition.

The project's objectives are, therefore, to

  • identify and model the most promising application scenarios for integrated emergency assistance,
  • transfer the emergency model into an application design, identify and engineer suitable ambient information technology,
  • engineer an adequate system architecture and platform, and
  • validate the models and the engineered system in laboratory and field trials.

For further information, please visit:
http://www.emerge-project.eu

Project co-ordinator:
Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.

Partners:

  • Siemens Aktiengesellschaft (Germany)
  • Westpfalz-Klinikum GmbH (Germany)
  • Information Society Open to Impairments e-Isotis (Greece)
  • Bay Zoltan Alkalmazott Kutatasi Kozalapitvany (Hungary)
  • Art of Technology AG (Switzerland)
  • Europäisches Microsoft Innovations Center GmbH (Germany)
  • National Centre for Scientific Research "Demokritos" (Greece)
  • Medizinische Universität Graz (Austria)

Timetable: from 01/02/2007 - 31/10/2009

Total cost: € 4.012.690

EC funding: € 2.449.964

Instrument: STREP

Project Identifier: IST-2005-045056

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...

Call for Papers: AI Applications in Biom…

JMIR Biomedical Engineering is inviting submissions for a new section titled "AI Applications in Biomedical Engineering." This themed section explores the integration of biomedical engineering and artificial intelligence (AI), focusing...