in silico Clinical Trials: How Computer Simulation will Transform the Biomedical Industry

The term 'in silico clinical trials' refers to: "The use of individualised computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention." While computer simulation is widely used for the development and de-risking of a number of 'mission-critical' products such as civil aircraft, nuclear power plants, etc, biomedical product development and assessment is still predominantly founded on experimental rather than computer-simulated approaches. The need for long and complex experiments in vitro, on animals, and then on patients during clinical trials pushes development costs to unsustainable levels, stifling innovation, and driving the cost of healthcare provision to unprecedented levels.

The Avicenna Action, funded by the European Commission, has engaged 525 experts from 35 countries, including 22 of the 28 members of the European Union, in an 18-month consensus process, to produce this research and technological development roadmap.

This document provides an overview of how biomedical products are developed today, where in silico clinical trials technologies are already used, and where else they could be used. From the identification of the barriers that prevent wider adoption, we derived a detailed list of research and technological challenges that require pre-competitive funding to be overcome.

Download: in silico Clinical Trials: How Computer Simulation will Transform the Biomedical Industry (.pdf, 5.500 KB).

Download from eHealthNews.eu: in silico Clinical Trials: How Computer Simulation will Transform the Biomedical Industry (.pdf, 5.500 KB).

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...