Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project

Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project One of the key problems in healthcare informatics is the lack of interoperability among different healthcare information systems. Interoperability can be investigated in different categories in the eHealth domain, such as the interoperability of the messages exchanged between healthcare applications, interoperability of Electronic Healthcare Records (EHRs), interoperability of patient identifiers, coding terms, clinical guidelines and healthcare business processes. Furthermore, all these categories can be investigated in two major layers: syntactic interoperability layer and the semantic interoperability layer. Syntactic interoperability (which we term as messaging layer), involves the ability of two or more systems to exchange information. Syntactic interoperability involves several layers: network and transport layer (such as Internet), application protocol layer (such as HTTP or email), messaging protocol and message format layer (such as ebXML messaging or SOAP), and the sequencing of the messages.

Syntactic interoperability guarantees the message to be delivered but does not guarantee that the content of the message will be machine processable at the receiving end. To guarantee message content interoperability, either the message content should conform to a single machine processable standard or semantic interoperability must be provided. Semantic interoperability is the ability for information shared by systems to be understood at the level of formally defined domain concepts.

This paper describes the concepts involved in eHealth interoperability; briefly assesses the current state in some of the countries in the world and discusses the technical issues to be addressed for achieving interoperability and concludes by providing links to the results achieved in the IST 027065 RIDE Project.

Download "Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project" Publication (.pdf, 144KB)

Coordinator contact details:
Prof. Dr. Asuman Dogac
Department of Computer Engineering
Director of Software Research & Development Center
Middle East Technical University
06531, Ankara, Turkey
http://www.srdc.metu.edu.tr/~asuman
Phone: +90 - 312 - 210 5598 or +90 - 312 - 210 2076
Fax: +90 - 312- 210 5572 or +90 - 312 - 210 1259

For further information, please visit: RIDE Project

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...