Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project

Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project One of the key problems in healthcare informatics is the lack of interoperability among different healthcare information systems. Interoperability can be investigated in different categories in the eHealth domain, such as the interoperability of the messages exchanged between healthcare applications, interoperability of Electronic Healthcare Records (EHRs), interoperability of patient identifiers, coding terms, clinical guidelines and healthcare business processes. Furthermore, all these categories can be investigated in two major layers: syntactic interoperability layer and the semantic interoperability layer. Syntactic interoperability (which we term as messaging layer), involves the ability of two or more systems to exchange information. Syntactic interoperability involves several layers: network and transport layer (such as Internet), application protocol layer (such as HTTP or email), messaging protocol and message format layer (such as ebXML messaging or SOAP), and the sequencing of the messages.

Syntactic interoperability guarantees the message to be delivered but does not guarantee that the content of the message will be machine processable at the receiving end. To guarantee message content interoperability, either the message content should conform to a single machine processable standard or semantic interoperability must be provided. Semantic interoperability is the ability for information shared by systems to be understood at the level of formally defined domain concepts.

This paper describes the concepts involved in eHealth interoperability; briefly assesses the current state in some of the countries in the world and discusses the technical issues to be addressed for achieving interoperability and concludes by providing links to the results achieved in the IST 027065 RIDE Project.

Download "Key Issues of Technical Interoperability Solutions in eHealth and the RIDE Project" Publication (.pdf, 144KB)

Coordinator contact details:
Prof. Dr. Asuman Dogac
Department of Computer Engineering
Director of Software Research & Development Center
Middle East Technical University
06531, Ankara, Turkey
http://www.srdc.metu.edu.tr/~asuman
Phone: +90 - 312 - 210 5598 or +90 - 312 - 210 2076
Fax: +90 - 312- 210 5572 or +90 - 312 - 210 1259

For further information, please visit: RIDE Project

Most Popular Now

AI Helps Physicians Better Assess the Ef…

In a small but multi-institutional study, an artificial intelligence (AI)-based system improved providers' assessments of whether patients with bladder cancer had complete response to chemotherapy before a radical cystectomy (bladder...

Smartwatches and Fitness Bands Reveal In…

A new digital health study by researchers at Scripps Research shows how data from wearable sensors, such as smartwatches and fitness bands, can track a person’s physiological response to the...

AI may Detect Earliest Signs of Pancreat…

An artificial intelligence (AI) tool developed by Cedars-Sinai investigators accurately predicted who would develop pancreatic cancer based on what their CT scan images looked like years prior to being diagnosed...

Open Call U4H-2022-PJ2: Call for Proposa…

The Ukraine crisis has an unprecedented impact on the mental health of the displaced people in the EU coming from Ukraine. The conflict and experiences of people in war zones...

AI Reduces Miss Rate of Precancerous Pol…

Artificial intelligence reduced by twofold the rate at which precancerous polyps were missed in colorectal cancer screening, reported a team of international researchers led by Mayo Clinic. The study is...

Medical Valley EMN & Volitan Global …

The two healthcare innovation experts Medical Valley EMN and Volitan Global strengthen their existing inbound- and outbound activities through a strategic partnership. The aim is to offer companies access to...

DMEA - Connecting Digital Health Opens w…

26 - 28 April 2022, Berlin, Germany. What plans does the new federal government have concerning the digital transformation of the healthcare sector? What are the initial experiences of doctors regarding...

AI can Predict Probability of COVID-19 v…

Testing shortages, long waits for results, and an over-taxed health care system have made headlines throughout the COVID-19 pandemic. These issues can be further exacerbated in small or rural communities...

Using AI to Detect Cancer from Patient D…

A new way of using artificial intelligence to predict cancer from patient data without putting personal information at risk has been developed by a team including University of Leeds medical...

Oulu University Hospital Expands Partner…

Siemens Healthineers and Oulu University Hospital in Finland have entered a strategic partnership for the next ten years, adding to an existing radiotherapy collaboration to jointly expand and modernize the...

Positive Conclusion to DMEA - Connecting…

26 - 28 April 2022, Berlin, Germany. After three days DMEA, Europe's leading digital health event, came to a successful conclusion - with around 11,000 visitors, more than 500 exhibitors and...

AI-Enabled ECGs may Identify Patients at…

Atrial fibrillation, the most common cardiac rhythm abnormality, has been linked to one-third of ischemic strokes, the most common type of stroke. But atrial fibrillation is underdiagnosed, partly because many...