Building a 3D Brain Atlas

Texas Biomed will help map the developing brain with unprecedented detail for the National Institutes of Health’s BRAIN Initiative Cell Atlas Network (BICAN). NIH recently awarded a total of $500 million to 11 teams that will work together to build a 3D brain atlas at single cell resolution over the next five years.

Texas Biomed and its Southwest National Primate Research Center are part of a team led by the University of California, San Francisco (UCSF), and also includes Yale University, University of Pennsylvania, University of Wisconsin - Madison, and University of California, Los Angeles.

"This is an example of what you could call 'Big science' with a capital B," says UCSF Professor Arnold Kriegstein, MD, PhD, who is overseeing the team's $36.4 million portion of the initiative. "It's much larger than any individual lab, or even a single institute, could hope to accomplish. It can only be done with a large collaborative group of investigators working together."

The team's contribution to the overall effort is mapping the developing brain - identifying cell types, activities and locations as they differentiate during development and change throughout childhood and into adolescence. They will also be the only team to draw direct comparisons between humans and nonhuman primate relatives.

"We are truly excited to be a part of this collaboration and see this 3D single cell brain map come to life," says Texas Biomed Associate Professor Marcel Daadi, PhD, one of the co-principal investigators of the NIH grant. "This project will help us better understand what makes our brains different and uniquely vulnerable to certain neurodegenerative diseases compared to our closest relatives."

By mapping female and male developing brains at key phases before birth, after birth, during childhood and teen years, the group aims to learn more about normal, healthy brain development. This will also provide a baseline to better understand how diseases like autism, schizophrenia and Parkinson's emerge.

"Usually, by the time we see symptoms of Parkinson's, about 80% of dopamine nerve terminals are already gone," Dr. Daadi says. "Changes in the brain that happen early in life might contribute to faulty brain connections and neurodegeneration in later years. This project could help us learn what those critical changes are and find new treatment targets."

This builds on the BRAIN Initiative’s first phase, called the Cell Census Network, which catalogued brain cell types, with an emphasis on mice. Now, in this phase, the teams will complete a comprehensive list of human brain cell types, and clarify how all those cells work together, showing what cell types are present in different structures of the brain.

"There are 80 billion cells in the brain and we don't really understand the composition, how those cells are distributed, or how that changes during development," Dr. Kriegstein says. "But we have technology now that allows us to look at these questions at extremely high resolution."

To create the atlas, researchers will not just identify individual cells, but also where they are located in the brain, which can shift, especially during development. They will use a combination of advanced single cell sequencing techniques as well as advanced imaging techniques to ultimately merge the data into an interactive map. A key feature of the BRAIN Initiative is making sure all teams are using standardized methods and technologies so all the data can be compiled together into a final product.

"When complete, the single-cell brain atlas will provide a resource that will inform future research into a wide range of health conditions for decades to come," says Joanne Turner, PhD, Texas Biomed's Executive Vice President of Research. "We are proud to contribute our expertise in animal models and can’t wait to see what new mechanisms are revealed."

The collaboration will also greatly benefit up-and-coming researchers, and is poised to inspire the next generation of scientists and leaders, much like the Human Genome Project did in the 1990s and early 2000s.

"I really think we've put together some of the best experts in the field, anywhere in the world, for this initiative," Dr. Kriegstein says. "I'm really excited for our early-career scientists to work alongside them and with each other on such a significant collaboration."

About Texas Biomed

Texas Biomed is one of the world's leading independent biomedical research institutions dedicated to eradicating infection and advancing health worldwide through innovative biomedical research. Texas Biomed partners with researchers and institutions around the world to develop vaccines and therapeutics against viral pathogens causing AIDS, hepatitis, hemorrhagic fever, tuberculosis and parasitic diseases responsible for malaria and schistosomiasis disease. The Institute has programs in host-pathogen interaction, disease intervention and prevention and population health to understand the links between infectious diseases and other diseases such as aging, cardiovascular disease, diabetes and obesity. For more information on Texas Biomed, go to www.TxBiomed.org.

Most Popular Now

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...