Consortium to Develop Fully Implantable Brain-Computer Interface to Enable Communication for People with Paralysis

A research consortium led by the UMC Utrecht Brain Center (the Netherlands) in collaboration with Graz University of Technology (Austria), the Wyss Center for Bio and Neuroengineering (Switzerland) and CorTec (Germany) is to receive a grant through the European Innovation Council (EIC) Pathfinder Challenge mechanism.

The researchers aim to develop a unique fully implantable Brain-Computer Interface (BCI) system for people with locked-in syndrome (LIS) - a condition in which paralysis severely limits communication. The BCI will be unprecedented in its small size, wireless and powered via induction so will not require batteries. Suitable for use at home, it will be capable of decoding speech in real-time to enable people with LIS to communicate with family and caregivers.

The project will further develop the Wyss Center’s fully implantable wireless ABILITY system to connect to customized electrocorticography (ECoG) electrode grids, developed by CorTec, that detect brain signals from the surface of the brain. The ambitious timeline aims for full implant development and verification in the first two years of the project, with the second two years focusing on clinical studies and algorithm improvements to restore communication in locked-in patients with amyotrophic lateral sclerosis (ALS) or brainstem stroke. ALS is a progressive neurodegenerative disease in which people gradually lose the ability to move and talk, eventually all means of communication are lost, leaving patients isolated. Brainstem stroke can render people unable to speak or move, without recovery.

"As a first step to enable the patients to interact with the system, we will set up the decoding for mouse clicks and cursor control from intended movements, which we have shown to be feasible in previous research," explains Prof. Dr. Gernot Müller-Putz, Head of the Institute of Neural Engineering and its associated Laboratory of Brain-Computer Interfaces at the Graz University of Technology.

"Our BCI system will go far beyond current technology," says Prof. Nick Ramsey from the UMC Utrecht Brain Center, the Netherlands, who coordinates the project. "We want to create a sustainable, high-resolution BCI by combining state-of-the-art hardware and software based on artificial intelligence (AI)."

"This new project builds on the promising preliminary data from our clinical study enabling communication with a completely locked-in participant, and our pre-clinical study currently underway with the wireless, implantable ABILITY device." said Dr. Jonas Zimmermann, Senior Neuroscientist at the Wyss Center. "In this project we will record from a larger area of the brain and explore new decoding algorithms that have the potential to tackle important clinical and social needs for people with ALS but also for those with other neurological conditions that impair movement and communication."

Dr. Tracy Laabs, Chief Development Officer at the Wyss Center, is excited: "After several years of prototype developments, this project will allow us to make the crucial final steps that will bring our system to the patient."

The BCI system will be trialed in two people with locked-in syndrome in the home environment. The brain surface-lining electrode grids will collect high resolution neural data that will be decoded using AI algorithms to translate the brain signals to computer speech in real-time.

The research project 'Intracranial Neurotelemetry to Restore Communication' (INTRECOM) is part of the EIC Pathfinder Challenge program in which the European Innovation Council supports visionary, entrepreneurial researchers who have bold ideas for radically new technologies. The Swiss participants receive support from the Swiss State Secretariat for Education, Research and Innovation (SERI).

About the Wyss Center for Bio and Neuroengineering

The Wyss Center is an independent, non-profit, research and development organization that advances our understanding of the brain to realize therapies and improve lives.

The Wyss Center staff, together with the Center's academic, clinical and industrial collaborators, pursue innovations and new approaches in neurobiology, neuroimaging and neurotechnology.

Wyss Center advances reveal unique insights into the mechanisms underlying the dynamics of the brain and the treatment of disease to accelerate the development of devices and therapies for unmet medical needs.

The Wyss Center was established by a generous donation from the Swiss entrepreneur and philanthropist Hansjörg Wyss in 2014. Additional resources from funding agencies and other sources help the Wyss Center accelerate its mission.

http://www.wysscenter.ch

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...