Consortium to Develop Fully Implantable Brain-Computer Interface to Enable Communication for People with Paralysis

A research consortium led by the UMC Utrecht Brain Center (the Netherlands) in collaboration with Graz University of Technology (Austria), the Wyss Center for Bio and Neuroengineering (Switzerland) and CorTec (Germany) is to receive a grant through the European Innovation Council (EIC) Pathfinder Challenge mechanism.

The researchers aim to develop a unique fully implantable Brain-Computer Interface (BCI) system for people with locked-in syndrome (LIS) - a condition in which paralysis severely limits communication. The BCI will be unprecedented in its small size, wireless and powered via induction so will not require batteries. Suitable for use at home, it will be capable of decoding speech in real-time to enable people with LIS to communicate with family and caregivers.

The project will further develop the Wyss Center’s fully implantable wireless ABILITY system to connect to customized electrocorticography (ECoG) electrode grids, developed by CorTec, that detect brain signals from the surface of the brain. The ambitious timeline aims for full implant development and verification in the first two years of the project, with the second two years focusing on clinical studies and algorithm improvements to restore communication in locked-in patients with amyotrophic lateral sclerosis (ALS) or brainstem stroke. ALS is a progressive neurodegenerative disease in which people gradually lose the ability to move and talk, eventually all means of communication are lost, leaving patients isolated. Brainstem stroke can render people unable to speak or move, without recovery.

"As a first step to enable the patients to interact with the system, we will set up the decoding for mouse clicks and cursor control from intended movements, which we have shown to be feasible in previous research," explains Prof. Dr. Gernot Müller-Putz, Head of the Institute of Neural Engineering and its associated Laboratory of Brain-Computer Interfaces at the Graz University of Technology.

"Our BCI system will go far beyond current technology," says Prof. Nick Ramsey from the UMC Utrecht Brain Center, the Netherlands, who coordinates the project. "We want to create a sustainable, high-resolution BCI by combining state-of-the-art hardware and software based on artificial intelligence (AI)."

"This new project builds on the promising preliminary data from our clinical study enabling communication with a completely locked-in participant, and our pre-clinical study currently underway with the wireless, implantable ABILITY device." said Dr. Jonas Zimmermann, Senior Neuroscientist at the Wyss Center. "In this project we will record from a larger area of the brain and explore new decoding algorithms that have the potential to tackle important clinical and social needs for people with ALS but also for those with other neurological conditions that impair movement and communication."

Dr. Tracy Laabs, Chief Development Officer at the Wyss Center, is excited: "After several years of prototype developments, this project will allow us to make the crucial final steps that will bring our system to the patient."

The BCI system will be trialed in two people with locked-in syndrome in the home environment. The brain surface-lining electrode grids will collect high resolution neural data that will be decoded using AI algorithms to translate the brain signals to computer speech in real-time.

The research project 'Intracranial Neurotelemetry to Restore Communication' (INTRECOM) is part of the EIC Pathfinder Challenge program in which the European Innovation Council supports visionary, entrepreneurial researchers who have bold ideas for radically new technologies. The Swiss participants receive support from the Swiss State Secretariat for Education, Research and Innovation (SERI).

About the Wyss Center for Bio and Neuroengineering

The Wyss Center is an independent, non-profit, research and development organization that advances our understanding of the brain to realize therapies and improve lives.

The Wyss Center staff, together with the Center's academic, clinical and industrial collaborators, pursue innovations and new approaches in neurobiology, neuroimaging and neurotechnology.

Wyss Center advances reveal unique insights into the mechanisms underlying the dynamics of the brain and the treatment of disease to accelerate the development of devices and therapies for unmet medical needs.

The Wyss Center was established by a generous donation from the Swiss entrepreneur and philanthropist Hansjörg Wyss in 2014. Additional resources from funding agencies and other sources help the Wyss Center accelerate its mission.

http://www.wysscenter.ch

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...