Wearable AI System can Detect a Conversation's Tone

It's a fact of nature that a single conversation can be interpreted in very different ways. For people with anxiety or conditions such as Asperger's, this can make social situations extremely stressful. But what if there was a more objective way to measure and understand our interactions?

Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute of Medical Engineering and Science (IMES) say that they've gotten closer to a potential solution: an artificially intelligent, wearable system that can predict if a conversation is happy, sad, or neutral based on a person's speech patterns and vitals.

"Imagine if, at the end of a conversation, you could rewind it and see the moments when the people around you felt the most anxious," says graduate student Tuka Alhanai, who co-authored a related paper with PhD candidate Mohammad Ghassemi that they will present at next week's Association for the Advancement of Artificial Intelligence (AAAI) conference in San Francisco. "Our work is a step in this direction, suggesting that we may not be that far away from a world where people can have an AI social coach right in their pocket."

As a participant tells a story, the system can analyze audio, text transcriptions, and physiological signals to determine the overall tone of the story with 83 percent accuracy. Using deep-learning techniques, the system can also provide a "sentiment score" for specific five-second intervals within a conversation.

"As far as we know, this is the first experiment that collects both physical data and speech data in a passive but robust way, even while subjects are having natural, unstructured interactions," says Ghassemi. "Our results show that it's possible to classify the emotional tone of conversations in real-time."

The researchers say that the system's performance would be further improved by having multiple people in a conversation use it on their smartwatches, creating more data to be analyzed by their algorithms. The team is keen to point out that they developed the system with privacy strongly in mind: The algorithm runs locally on a user's device as a way of protecting personal information. (Alhanai says that a consumer version would obviously need clear protocols for getting consent from the people involved in the conversations.)

Many emotion-detection studies show participants "happy" and "sad" videos, or ask them to artificially act out specific emotive states. But in an effort to elicit more organic emotions, the team instead asked subjects to tell a happy or sad story of their own choosing.

Subjects wore a Samsung Simband, a research device that captures high-resolution physiological waveforms to measure features such as movement, heart rate, blood pressure, blood flow, and skin temperature. The system also captured audio data and text transcripts to analyze the speaker's tone, pitch, energy, and vocabulary.

"The team's usage of consumer market devices for collecting physiological data and speech data shows how close we are to having such tools in everyday devices," says Björn Schuller, professor and chair of Complex and Intelligent Systems at the University of Passau in Germany, who was not involved in the research. "Technology could soon feel much more emotionally intelligent, or even 'emotional' itself."

After capturing 31 different conversations of several minutes each, the team trained two algorithms on the data: One classified the overall nature of a conversation as either happy or sad, while the second classified each five-second block of every conversation as positive, negative, or neutral.

Alhanai notes that, in traditional neural networks, all features about the data are provided to the algorithm at the base of the network. In contrast, her team found that they could improve performance by organizing different features at the various layers of the network.

"The system picks up on how, for example, the sentiment in the text transcription was more abstract than the raw accelerometer data," says Alhanai. "It's quite remarkable that a machine could approximate how we humans perceive these interactions, without significant input from us as researchers."

Indeed, the algorithm's findings align well with what we humans might expect to observe. For instance, long pauses and monotonous vocal tones were associated with sadder stories, while more energetic, varied speech patterns were associated with happier ones. In terms of body language, sadder stories were also strongly associated with increased fidgeting and cardiovascular activity, as well as certain postures like putting one's hands on one's face.

On average, the model could classify the mood of each five-second interval with an accuracy that was approximately 18 percent above chance, and a full 7.5 percent better than existing approaches.

The algorithm is not yet reliable enough to be deployed for social coaching, but Alhanai says that they are actively working toward that goal. For future work the team plans to collect data on a much larger scale, potentially using commercial devices such as the Apple Watch that would allow them to more easily implement the system out in the world.

"Our next step is to improve the algorithm's emotional granularity so that it is more accurate at calling out boring, tense, and excited moments, rather than just labeling interactions as 'positive' or 'negative,'" says Alhanai. "Developing technology that can take the pulse of human emotions has the potential to dramatically improve how we communicate with each other."

This research was made possible in part by the Samsung Strategy and Innovation Center.

Download Paper: Predicting Latent Narrative Mood using Audio and Physiologic Data.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...