Wearable AI System can Detect a Conversation's Tone

It's a fact of nature that a single conversation can be interpreted in very different ways. For people with anxiety or conditions such as Asperger's, this can make social situations extremely stressful. But what if there was a more objective way to measure and understand our interactions?

Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute of Medical Engineering and Science (IMES) say that they've gotten closer to a potential solution: an artificially intelligent, wearable system that can predict if a conversation is happy, sad, or neutral based on a person's speech patterns and vitals.

"Imagine if, at the end of a conversation, you could rewind it and see the moments when the people around you felt the most anxious," says graduate student Tuka Alhanai, who co-authored a related paper with PhD candidate Mohammad Ghassemi that they will present at next week's Association for the Advancement of Artificial Intelligence (AAAI) conference in San Francisco. "Our work is a step in this direction, suggesting that we may not be that far away from a world where people can have an AI social coach right in their pocket."

As a participant tells a story, the system can analyze audio, text transcriptions, and physiological signals to determine the overall tone of the story with 83 percent accuracy. Using deep-learning techniques, the system can also provide a "sentiment score" for specific five-second intervals within a conversation.

"As far as we know, this is the first experiment that collects both physical data and speech data in a passive but robust way, even while subjects are having natural, unstructured interactions," says Ghassemi. "Our results show that it's possible to classify the emotional tone of conversations in real-time."

The researchers say that the system's performance would be further improved by having multiple people in a conversation use it on their smartwatches, creating more data to be analyzed by their algorithms. The team is keen to point out that they developed the system with privacy strongly in mind: The algorithm runs locally on a user's device as a way of protecting personal information. (Alhanai says that a consumer version would obviously need clear protocols for getting consent from the people involved in the conversations.)

Many emotion-detection studies show participants "happy" and "sad" videos, or ask them to artificially act out specific emotive states. But in an effort to elicit more organic emotions, the team instead asked subjects to tell a happy or sad story of their own choosing.

Subjects wore a Samsung Simband, a research device that captures high-resolution physiological waveforms to measure features such as movement, heart rate, blood pressure, blood flow, and skin temperature. The system also captured audio data and text transcripts to analyze the speaker's tone, pitch, energy, and vocabulary.

"The team's usage of consumer market devices for collecting physiological data and speech data shows how close we are to having such tools in everyday devices," says Björn Schuller, professor and chair of Complex and Intelligent Systems at the University of Passau in Germany, who was not involved in the research. "Technology could soon feel much more emotionally intelligent, or even 'emotional' itself."

After capturing 31 different conversations of several minutes each, the team trained two algorithms on the data: One classified the overall nature of a conversation as either happy or sad, while the second classified each five-second block of every conversation as positive, negative, or neutral.

Alhanai notes that, in traditional neural networks, all features about the data are provided to the algorithm at the base of the network. In contrast, her team found that they could improve performance by organizing different features at the various layers of the network.

"The system picks up on how, for example, the sentiment in the text transcription was more abstract than the raw accelerometer data," says Alhanai. "It's quite remarkable that a machine could approximate how we humans perceive these interactions, without significant input from us as researchers."

Indeed, the algorithm's findings align well with what we humans might expect to observe. For instance, long pauses and monotonous vocal tones were associated with sadder stories, while more energetic, varied speech patterns were associated with happier ones. In terms of body language, sadder stories were also strongly associated with increased fidgeting and cardiovascular activity, as well as certain postures like putting one's hands on one's face.

On average, the model could classify the mood of each five-second interval with an accuracy that was approximately 18 percent above chance, and a full 7.5 percent better than existing approaches.

The algorithm is not yet reliable enough to be deployed for social coaching, but Alhanai says that they are actively working toward that goal. For future work the team plans to collect data on a much larger scale, potentially using commercial devices such as the Apple Watch that would allow them to more easily implement the system out in the world.

"Our next step is to improve the algorithm's emotional granularity so that it is more accurate at calling out boring, tense, and excited moments, rather than just labeling interactions as 'positive' or 'negative,'" says Alhanai. "Developing technology that can take the pulse of human emotions has the potential to dramatically improve how we communicate with each other."

This research was made possible in part by the Samsung Strategy and Innovation Center.

Download Paper: Predicting Latent Narrative Mood using Audio and Physiologic Data.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...