VTT Develops a Simple but Extremely Sensitive Magnetometer

VTT Technical Research Centre of Finland has developed an innovative magnetometer that can replace conventional technology in applications such as neuroimaging, mineral exploration and molecular diagnostics. Its manufacturing costs are between 70 and 80 per cent lower than those of traditional technology, and the device is not as sensitive to external magnetic fields as its predecessors. The design of the magnetometer also makes it easier to integrate into measuring systems.

Magnetometers are sensors that measure magnetic fields or changes in magnetic fields. The kinetic inductance magnetometer developed by VTT makes use of the dependence of superconductors' electrical properties on magnetic fields. This has allowed research scientists to develop an innovative sensor element which is considerably more simplistic than conventional SQUID sensors. The new magnetometer is based on a single patterned thin film. It can be fabricated in a single-phase process unlike SQUID sensors, which require a layered structure and a multi-phase fabrication process.

The manufacturing costs of VTT's new magnetometer are estimated to be between 70 and 80 per cent lower than those of a corresponding SQUID sensor. It is also less sensitive to external disturbances such as the earth's magnetic field or electrical systems than its predecessors. This property will be useful in the development of new medical imaging techniques, such as magnetic resonance imaging based on ultra-low magnetic fields where the measuring fields can be commensurate with the earth's magnetic field.

Highly sensitive magnetometers are needed in medicine, for example, to detect minuscule changes in magnetic fields caused by nerve signals. In the context of neuroimaging this technique is called magnetoencephalography (MEG), and it can be used to locate pathological activity in patients with epilepsy who require surgical treatment, to diagnose autism or to map brain activity more generally. Magnetometers are also used in the mining industry for mineral exploration, in industrial quality control and in certain security applications.

VTT's innovative magnetometer is expected to hit the market in a few years' time.

A scientific article on the subject has been published in the Nature Communications journal, doi:10.1038/ncomms5872

About VTT Technical Research Centre of Finland
VTT is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. Every third Finnish technology innovation contains VTT expertise. VTT's turnover is EUR 310 million and its personnel totals 2,900.

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...