Software Created from 'Building Blocks' could Incorporate AI, Supporting Medical Staff with Workflow and Disease Management

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease management, according to the findings of new research.

The study, by Dr Robert Free at the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre (BRC), suggests that using a package of digital 'building-blocks' to create clinical decision support programs would make it possible to create digital tools that help medical staff prioritise patient care and workloads more effectively.

The study, published in Frontiers in Digital Health outlines how a system of computer software building blocks, developed by the research team, could enable faster more effective disease management protocols for handling local admissions of community acquired pneumonia (CAP). It also explores how this approach could be applied across healthcare more generally.

Their building block system, Embeddable AI and State-based Understandable Logic (EASUL) can use historic data, electronic medical records and include algorithms to develop digital platforms that accommodate different stages of clinical care for patients and allow medical staff to examine this - including likely patient outcomes.

In the study, researchers modelled scenarios using existing patient data and consultations with teams of Specialist Pneumonia Intervention Nurses (SPIN) to test how a program built using EASUL could be used to help clinicians manage those admitted with CAP. The program was given the data of 52,471 adults admitted between April and June 2022, 630 of whom were diagnosed with CAP. The advice and information generated by the program was compared with the clinical risk assessments given by the SPIN team.

When tallied, EASUL risk assessment matched with the SPIN teams 49.4 % of the time. EASUL never rated any patient as low risk who had been rated as high risk by the clinical team. EASUL also identified 57 cases which, when reviewed by researchers, should have been rated as high risk but only recorded as low or moderate by clinical staff. The paper's authors stressed that the differences were likely due to individual clinical judgement where extensive risk assessment was not considered as clinically appropriate. Due to a lack of available information in the existing patient data it was not possible to include this element in the evaluation.

The researchers behind EASUL also believe another of its potential advantages is its flexible design. It allows for 'on the fly data', collected as treatment and research is carried out, to be easily included in the system. It has also been designed in a format that can potentially be integrated with existing digital clinical decision support systems.

As a result, EASUL could be adjusted to suit the needs of a variety of clinical settings. It is also designed to automatically adjust its calculation in case of missing data, meaning it could provide robust and relevant informatio to clinical staff in a variety of different situations.

Dr Robert Free, Lecturer in Health Data Science and principal investigator on the study said: "This is a very exciting development. Our proof-of-concept clinical system allowed us to demonstrate how our building block approach could deal with algorithms of varying complexities across the patient's care. Using EASUL we were able to include both simple risk scores and a pre-existing artificial intelligence model in a real-time data-driven workflow and then present it to clinicians - helping them make decisions about patients."

Dr Pranabhashis Haldar, a Senior Clinical Lecturer in the NIHR Leicester BRC's Respiratory Theme, and a contributor to the study, added "The flexible nature of our approach means it can be extended to support different data types, adaptive workflows including advanced artificial intelligence models and potentially mobile apps. Additionally, it could also be used to support patient directed healthcare actions, such as remote monitoring."

Dr Free concluded: "We believe that EASUL and similar approaches are important steps for making better use of health data from multiple sources and would help to strengthen trust and accountability in complex artificial intelligence enabled clinical decision support. However, we recognise that further research is needed before this can be rolled out into active clinical settings."

Free RC, Lozano Rojas D, Richardson M, Skeemer J, Small L, Haldar P, Woltmann G.
A data-driven framework for clinical decision support applied to pneumonia management.
Front Digit Health. 2023 Oct 9;5:1237146. doi: 10.3389/fdgth.2023.1237146

Most Popular Now

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...

Virtual Reality Shows Promise in Fightin…

A new study published in JMIR Mental Health sheds light on the promising role of virtual reality (VR) in treating major depressive disorder (MDD). Titled "Examining the Efficacy of Extended...

AXREM and Highland Marketing Partner to …

AXREM represents member companies that collectively provide UK hospitals with most of their diagnostic medical imaging technology, and radiotherapy equipment. The association has seen substantial growth in recent years, with membership...

Virtual Reality Environment for Teens ma…

Social media. The climate crisis. Political polarization. The tumult of a pandemic and online learning. Teens today are dealing with unprecedented stressors, and over the past decade their mental health...

AI Predicts Tumor-Killing Cells with Hig…

Using artificial intelligence, Ludwig Cancer Research scientists have developed a powerful predictive model for identifying the most potent cancer killing immune cells for use in cancer immunotherapies. Combined with additional algorithms...

Somerset NHS Foundation Trust Works with…

Somerset NHS Foundation Trust is working with Oleeo to help to support its recruitment processes and deliver a better experience for recruitment managers and candidates. The trust, which employs 14,000 people...

Researchers Use Foundation Models to Dis…

Researchers at Mass General Brigham have harnessed the technology behind foundation models, which power tools like ChatGPT, to discover new cancer imaging biomarkers that could transform how patterns are identified...

Why Standards are Key to Building Trust …

Opinion Article by Dean Mawson, Clinical Director and Founder, DPM Digital Health Consultancy. There's considerable interest in the potential uses of AI in healthcare at the moment; but there is also...

AI Tool to Improve Heart Failure Care

UVA Health researchers have developed a powerful new risk assessment tool for predicting outcomes in heart failure patients. The researchers have made the tool publicly available for free to clinicians. The...