New Database could Accelerate Drug Repurposing for Various Diseases

Researchers have created a new open-access database of information on drug candidates and how they are metabolised by the body, which could help speed up the repurposing of old drugs as new treatments.

There is an urgent need for more effective treatments for many conditions, including COVID-19, cancer and malaria. But the process of developing new drugs is costly, can take decades, and often leads to failed treatments. The database, called NICEdrug.ch and described today in eLife, may help expedite the process by helping scientists find promising, existing drugs that might be repurposed for these diseases.

"By finding a way to improve how we discover and design new drugs, we could reduce the time and costs involved in the drug-development process," says lead author Homa Mohammadi Peyhani, Postdoctoral Researcher at the Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

To help, Peyhani and colleagues created the NICEdrug.ch database with information on 250,000 potential drug molecules. The database includes detailed analysis of the drugs’ structures, the enzymes they target, how they are likely to be altered by human metabolism, and their potential side effects.

Using their database, the team showed that it could accurately predict the behaviour of drug-enzyme pairs around 70% of the time, and that it was 100% accurate for half of the pairs tested.

They then used the system to look for drugs that could be repurposed for cancer, high cholesterol, malaria and COVID-19. Their search yielded some clues on how scientists might alleviate the toxic side effects of the cancer drug 5-fluorouracil. They also identified shikimate 3-phospate as a potential drug to treat the liver stage of malaria with fewer side effects. And they identified over 1,300 potential anti-COVID-19 drugs, including some that are already safely used to treat a number of other conditions. Further studies are now necessary to validate that these drugs can be repurposed for this disease.

The researchers have made the NICEdrug.ch database available for others as an open-access resource. In addition to helping find new purposes for existing drugs, the system may help scientists understand why some drugs cause harmful side effects and either identify ways to alleviate them or explore alternative drugs.

"Our hope is that scientists and decision makers in the pharmaceutical industry alike can use this unique database to better inform their research and clinical decisions - saving time, money and ultimately lives," concludes senior author Vassily Hatzimanikatis, Associate Professor of Chemical Engineering and Bioengineering at EPFL.

MohammadiPeyhani H, Chiappino-Pepe A, Haddadi K, Hafner J, Hadadi N, Hatzimanikatis V.
NICEdrug.ch, a workflow for rational drug design and systems-level analysis of drug metabolism.
Elife. 2021 Aug 3;10:e65543. doi: 10.7554/eLife.65543

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...