Can a Brain-Computer Interface Convert your Thoughts to Text?

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential game-changer for those with speech pathologies, and even more so for "locked-in" patients who lack any speech or motor function.

"So instead of saying 'Siri, what is the weather like today' or 'Ok Google, where can I go for lunch?' I just imagine saying these things," explains Christian Herff, author of a review recently published in the journal Frontiers in Human Neuroscience.

While reading one's thoughts might still belong to the realms of science fiction, scientists are already decoding speech from signals generated in our brains when we speak or listen to speech.

In their review, Herff and co-author, Dr. Tanja Schultz, compare the pros and cons of using various brain imaging techniques to capture neural signals from the brain and then decode them to text.

The technologies include functional MRI and near infrared imaging that can detect neural signals based on metabolic activity of neurons, to methods such as EEG and magnetoencephalography (MEG) that can detect electromagnetic activity of neurons responding to speech. One method in particular, called electrocorticography or ECoG, showed promise in Herff's study.

This study presents the Brain-to-text system in which epilepsy patients who already had electrode grids implanted for treatment of their condition participated. They read out texts presented on a screen in front of them while their brain activity was recorded. This formed the basis of a database of patterns of neural signals that could now be matched to speech elements or "phones".

When the researchers also included language and dictionary models in their algorithms, they were able to decode neural signals to text with a high degree of accuracy. "For the first time, we could show that brain activity can be decoded specifically enough to use ASR technology on brain signals," says Herff. "However, the current need for implanted electrodes renders it far from usable in day-to-day life."

So, where does the field go from here to a functioning thought detection device? "A first milestone would be to actually decode imagined phrases from brain activity, but a lot of technical issues need to be solved for that," concedes Herff.

Their study results, while exciting, are still only a preliminary step towards this type of brain-computer interface.

Herff C, Schultz T.
Automatic Speech Recognition from Neural Signals: A Focused Review.
Front Neurosci. 2016 Sep 27;10:429 DOI: 10.3389/fnins.2016.00429

Most Popular Now

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...

Cleveland Clinic Study Finds AI can Deve…

Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on...

New AI-Technology Estimates Brain Age Us…

As people age, their brains do, too. But if a brain ages prematurely, there is potential for age-related diseases such as mild-cognitive impairment, dementia, or Parkinson's disease. If "brain age...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...

Study Shows ChatGPT Failed when Challeng…

With artificial intelligence (AI) poised to become a fundamental part of clinical research and decision making, many still question the accuracy of ChatGPT, a sophisticated AI language model, to support...