Your Wearable Devices Reveal Your Personal PIN

Wearable devices can give away your passwords, according to new research. In the paper "Friend or Foe?: Your Wearable Devices Reveal Your Personal PIN" scientists from Binghamton University and the Stevens Institute of Technology combined data from embedded sensors in wearable technologies, such as smartwatches and fitness trackers, along with a computer algorithm to crack private PINs and passwords with 80-percent accuracy on the first try and more than 90-percent accuracy after three tries.

Yan Wang, assistant professor of computer science within the Thomas J. Watson School of Engineering and Applied Science at Binghamton University is a co-author of the study along with Chen Wang, Xiaonan Guo, Bo Liu and lead researcher Yingying Chen from the Stevens Institute of Technology. The group is collaborating on this and other mobile device-related security and privacy projects.

"Wearable devices can be exploited," said Wang. "Attackers can reproduce the trajectories of the user's hand then recover secret key entries to ATM cash machines, electronic door locks and keypad-controlled enterprise servers."

Researchers conducted 5,000 key-entry tests on three key-based security systems, including an ATM, with 20 adults wearing a variety of technologies over 11 months. The team was able to record millimeter-level information of fine-grained hand movements from accelerometers, gyroscopes and magnetometers inside the wearable technologies regardless of a hand's pose. Those measurements lead to distance and direction estimations between consecutive keystrokes, which the team's "Backward PIN-sequence Inference Algorithm" used to break codes with alarming accuracy without context clues about the keypad.

According to the research team, this is the first technique that reveals personal PINs by exploiting information from wearable devices without the need for contextual information.

"The threat is real, although the approach is sophisticated," Wang added. "There are two attacking scenarios that are achievable: internal and sniffing attacks. In an internal attack, attackers access embedded sensors in wrist-worn wearable devices through malware. The malware waits until the victim accesses a key-based security system and sends sensor data back. Then the attacker can aggregate the sensor data to determine the victim's PIN. An attacker can also place a wireless sniffer close to a key-based security system to eavesdrop sensor data from wearable devices sent via Bluetooth to the victim's associated smartphones."

The findings are an early step in understanding security vulnerabilities of wearable devices. Even though wearable devices track health and medical activities, their size and computing power doesn't allow for robust security measures, which makes the data within more vulnerable to attack.

The team did not have a solution for the problem in the current research, but did suggest that developers, "inject a certain type of noise to data so it cannot be used to derive fine-grained hand movements, while still being effective for fitness tracking purposes such as activity recognition or step counts."

The team also suggests better encryption between the wearable device and the host operating system.

Chen Wang, Xiaonan Guo, Yan Wang, Yingying Chen, and Bo Liu. 2016. Friend or Foe?: Your Wearable Devices Reveal Your Personal PIN. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS '16). ACM, New York, NY, USA, 189-200. DOI: http://dx.doi.org/10.1145/2897845.2897847

The paper was published in proceedings of - and received the "Best Paper Award" - at the 11th annual Association for Computing Machinery Asia Conference on Computer and Communications Security (ASIACCS) in Xi'an, China, on May 30-June 3.

The research was funded, in-part, by a grant from the National Science Foundation and the United States Army Research Office.

Most Popular Now

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...

Cleveland Clinic Study Finds AI can Deve…

Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on...

New AI-Technology Estimates Brain Age Us…

As people age, their brains do, too. But if a brain ages prematurely, there is potential for age-related diseases such as mild-cognitive impairment, dementia, or Parkinson's disease. If "brain age...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...