New "Virtual Liver" Technology Helps Detect Liver Tumours

Scientists and surgeons from France, Germany, United Kingdom and Switzerland have developed a "virtual liver", using EU research funding, which will help surgeons better plan and carry out tumour operations and ensure quicker patient recovery. The PASSPORT project (Patient-Specific Simulation and Pre-Operative Realistic Training) makes a uniquely accurate "virtual liver" available to physicians based on medical images sent by the radiologist to a PASSPORT online service, which helps surgeons decide whether they should or not operate. Surgeons can now see more precisely where a tumour is and where they will have to operate to safely remove it.

European Commission Vice President Neelie Kroes said: "Liver cancer claims hundreds of thousands of lives in Europe and the world. The technology developed in the EU-funded PASSPORT project is a breakthrough that will improve diagnosis and surgery, and help to save lives."

The liver performs more than 100 vital functions in the human body. Liver diseases, including cancer and sclerosis of the liver, kill thousands of people every year. Liver transplants are only an option for a very small proportion of patients with liver disease. Another option is to remove the infected part of the organ and allow the liver to regenerate. To do so, surgeons need to know the tumour’s precise location, the volume of the functional liver which would remain, and the patient's overall health in order to accurately assess the chance of a successful intervention. Under current practices, less than 50% of patients undergo surgery. PASSPORT's virtual liver could considerably increase this percentage.

The virtual software being used in the project is based on open source technology available online making it easier for surgeons to collaborate and share their analysis.

Using EU-research funding to help improve citizens' lives, medical knowledge, and enable high-tech industries are among the goals of the Digital Agenda for Europe.

First results of the project clearly demonstrate the cost effectiveness and benefits of patient-specific surgical planning. The next step is making the software commercially available. This commercialisation will be a first step towards the routine clinical use of PASSPORT results. In practice, this means that a surgeon based anywhere in the world will be able to use this model, adjust it to the needs of each patient and considerably lower the cost of each patient's operation.

The PASSPORT project started in June 2008 and ended in December 2011. The total cost was €5,457,174 of which €3,635,049 came from EU funding. PASSPORT is part of the "Virtual Physiological Human" Network of Excellence (VPH NoE). The VPH NoE is a project which aims to help support and advance European research in biomedical modelling and simulation of the human body. It allows the surgeon to zoom in from the body to the organ, from the organ to the tissue, from the tissue to the cell. It thus allows a "multi-layered" approach so specialists can track the disease and see the way in which the disease propagates through the different levels of the body.

Related article:

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...