Mobile Technology - a New Infection Risk?

FutureNovaOpinion Article by Mike Casey, CEO of FutureNova, former NHS CIO.
Before the advent of modern medicine, a stay in hospital was a risky business - in a crowded, dirty ward, an infection could spread like wildfire. The introduction of good hygiene practices, followed by the development of penicillin, resulted in a dramatic fall in infection rates.

The rise in antibiotic-resistant diseases such as MRSA and Clostridium difficile a few years ago put hospitals on the back foot, however. Although robust efforts to tackle the spread of these diseases have seen rates tumble, even now 300,000 NHS patients in England develop a health care associated infection (HCAI) every year.

Tackling infections on-the-move
For the NHS, it's an expensive business. In 2014, the NHS Litigation Authority (NHSLA) paid out £1.1bn in compensation, and this year that's expected to rise to £1.4bn. Any hospital trust with high levels of HCAIs can expect to see its insurance premiums go up. Not only that, but the cost of treating the infection and patients' prolonged stay in a hospital bed, adds to the trust's bill. So it's absolutely vital, both for the good of patients and for NHS finances that trust boards find new ways of combating the spread of infection. This means making sure that all possible sources of infection are identified and tackled. Although trusts have been rigorous in implementing best practice guidance on HCAIs, such as that issued by Public Health England, there is one area that is easily overlooked - mobile technology.

Forward-thinking trusts are already benefiting from the productivity and clinical safety improvements mobile devices can bring. The traditional process of using desktop computers to access and record information is cumbersome and inefficient, hindering clinicians' ability to do their job. Doctors who share a desktop computer spend a part of every day queuing up to use it, and then more time logging on and logging off. It's a process that can take several minutes each time, adding up to hours every week.

Gordon Caldwell, a consultant physician at Worthing Hospital, has made a powerful case for the importance of clinicians having fast, easy access to clinical information. "Tardy access to core clinical information systems may be close to paralysing clinical care processes in many NHS hospitals," he warns. Caldwell refers to the hours spent queuing for desktops and logging on and off as "non productive, wasted time."

Even computers on wheels do little to improve the situation. The clinician may have to drag the cart over to the patient bed, and will still have to spend time logging onto the system or systems they want to access.

Having spent many years as a CIO in a hospital trust, I've seen how mobile technology can transform working practices. The use of iPads at a patient’s bedside enables doctors to access and record information without having to waste time finding a desktop computer. It could be as simple as accessing a medical dictionary to check a particular detail, looking up the patient's haematology or microbiology results, or showing the patient their X-ray or MRI images.

Imagine the doctor wants to order a blood test for the patient. Traditionally, they'd have to write the patient’s name down on a piece of paper, and then make the request later at the desktop computer. This not only slows down the process of ordering the test, it creates a risk of mistyping important details, such as the patient's name, with potentially devastating consequences. Making the request through a wifi-enabled iPad means that the doctor can check the patient’s details at the bedside and ensure that the test happens quickly.

Or perhaps the doctor wants to prescribe a different drug for the patient. Using e-prescription software - which has been found to slash medical errors - in conjunction with an iPad enables the doctor to access the list of drugs a patient is currently on, check which ones might be either suitable or contra-indicated for the patient's condition, and write a new prescription, which will go without delay to the pharmacy.

No longer is the doctor wasting hours queuing for the computer or logging in and out. Everyone wins: doctors' productivity improves, patients benefit from speedier treatment and a reduction in errors, and the trust saves money. But mobile technology can bring increased infection risk. As doctors move from ward to ward with their iPads, they may be taking bacteria with them, passing an infection around the hospital. One US-based study that took swab samples from the electronic devices (both tablets and phones) of 106 hospital workers found that every device housed bacteria, either on the device itself or its cover.

The case for mobile cases
How can we fight back against HCAIs? NHS infection control staff using Apple iPads have been searching for adequate protection of the devices in the form of cases that are capable of being cleaned with standard infection control sprays and wipes. Cleaning the iPad directly with harsh infection control sprays invalidates the Apple warranty. I had a mission to help solve this problem and worked directly with NHS staff to design a new medical grade ruggedised case called the FlipPad.

In December 2014, nine hospitals were closed due to Norovirus outbreaks. It has a tremendous impact on a hospital's ability to treat patients. Doctors and nurses who are normally immune to this bug are struck down with it. Every winter the NHS fights to stay on top of this nasty bug. They develop strategies to combat it and are honing down on the natural transmission pathway for the bug. It can survive on hard surfaces for days and in some cases for weeks.

Powerful infection control sprays and wipes are the only way to kill this bug. Once an outbreak is in a hospital, it becomes a battle to restore services. Forward-thinking hospitals are constantly searching for tactics to win this battle before it starts. They want mobility for their clinicians and a clever policy to deal with infection control on any mobile device.

The government requires the NHS to find £22bn of efficiency savings over the next five years. Mobile technology can play a central role in making that happen - while improving patient care at the same time. But any implementation of mobile technology will require a board-level decision to introduce a standardised method for ensuring that mobile devices are germ-free. This dual strategy - adopting mobile technology in tandem with a thought-out infection control policy - will be crucial in delivering a more productive, patient-focused NHS.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...