ki:elements Publishes New Validation Results on Remote Speech Biomarker for Cognition (SB-C) in Early Alzheimer's Disease

ki:elementsDigital speech biomarker company ki:elements has published validation results on the use of its ki:e speech biomarker for cognition (SB-C) in early Alzheimer’s disease in the "Karger - Digital Biomarkers" journal.(1)

Two European dementia studies - the Dutch DeepSpA study in collaboration with Maastricht University & the Scottish SPeAK study in collaboration with University of Edinburgh - helped to validate the psychometric properties of the SB-C. Results demonstrate the ki:e SB-C's ability to differentiate subjective complaints from people with mild cognitive impairment, and its ability to track decline towards Mild Cognitive Impairment in early phases of the disease within a year. On a construct level the SB-C score is correlated with established measures for cognition and its domain scores are anchored around established assessments for neurocognitive functions such as learning and memory, executive function and processing speed. In the longitudinal DeepSpA study the SB-C shows also good test-retest reliability. Validation followed the V3 approach championed by the Digital Medicine Society (DiMe).

Prof. Craig Ritchie, Chair of the Psychiatry of Ageing and Director of the Centre for Dementia Prevention at the University of Edinburgh, and PI of the SpEAK study commented: "Early detection of AD is the prerequisite for prevention. These results show that speech is a scalable and sensitive screening tool that could be a key building block in ending AD."

Dr. Johannes Tröger, Chief Scientific Officer of ki:elements added: "We are pleased with these validation results in early AD, validating that SB-C is a reliable measure of cognition - usable in clinical trials and healthcare. In parallel, we are working on studies validating the SB-C in even earlier, preclinical stages of the disease."

About ki:elements and SB-C

ki:elements GmbH is pioneering the research and development of novel digital speech biomarkers. The ki:e speech biomarker for cognition (SB-C) is a speech based cognitive digital biomarker that takes fifteen minutes to complete, can be administered remotely and automatically. It is used in academic and pharmaceutical research as a scalable cognition measurement and screening tool.

For more information, visit https://ki-elements.de

1. Tröger J, Baykara E, Zhao J, ter Huurne D, Possemis N, Mallick E, Schäfer S, Schwed L, Mina M, Linz N, Ramakers I, Ritchie C.
Validation of the Remote Automated ki:e Speech Biomarker for Cognition in Mild Cognitive Impairment: Verification and Validation following DiME V3 Framework.
Digit Biomark 2022;6:107-116. doi: 10.1159/000526471

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...