A novel ontology-based biomedical search engine

When people search, they have questions in mind. GoPubMed allows to significantly faster find information needed through the use of background knowledge. GoPubMed:
  • retrieves PubMed abstracts for your search query,
  • detects terms from the Gene Ontology (GO) and Medical Subject Headings (MeSH) in the abstracts,
  • displays the subset of the GO and MeSH relevant to the keywords, and
  • allows you to browse the ontologies and display only papers containing specific GO and MeSH terms.

After performing a search, the resulting abstracts are annotated with your query keywords and GO and MeSH terms. The abstracts are grouped using the GO and MeSH terms, which appear in the text. Now the GO and MeSH hierarchies can be used to systematically explore the search results.

Note that only a subset of all GO and MeSH terms may be relevant to your query. This subset – more frequent terms - is presented on the left hand side. Sorting documents to a highly organised network facilitates the finding of relevant documents significantly.

The hierarchy of content shows the whole GO and MeSH ontologies. GO and MeSH serve as table of contents in order to structure the over 16 million articles of the MEDLINE data base.

About Gene Ontology (GO)
The GO provides a controlled vocabulary to describe gene and gene products in different organisms. GO is a knowledge network containing about 20.000 biological terms. It is built up as a directed acyclic graph starting from three basic areas namely

  • the molecular function of gene products,
  • their role in multi-step biological processes, and
  • their localization to cellular components.

GO terms are classified into only one of the three branches of the ontology. Although the ontology is presented as a tree, it is a network with cross links. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view.

About the Medical Subject Headings (MeSH)
MeSH is the controlled vocabulary thesaurus from National Library of Medicine's. It consists of sets of terms in a hierarchical structure that permits searching at various levels of specificity. At the most general level of the hierarchy are very broad headings such as "Anatomy" or "Diseases". More specific headings are found at more narrow levels.

There are more than 110,000 MeSH concepts in GoPubMed. There are also thousands of cross-references that assist in finding the most appropriate MeSH concept. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view. From the eleven levels of the MeSH hierarchy, GoPubMed uses the parts:

  • Anatomy,
  • Biological Sciences,
  • Chemicals and Drugs,
  • Diseases,
  • Health Care,
  • Natural Sciences,
  • Organisms,
  • Psychiatry and Psychology,
  • Techniques and Equipment, and
  • Technology, Industry, Agriculture

For further information, please visit:
http://www.gopubmed.com/

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...