A novel ontology-based biomedical search engine

When people search, they have questions in mind. GoPubMed allows to significantly faster find information needed through the use of background knowledge. GoPubMed:
  • retrieves PubMed abstracts for your search query,
  • detects terms from the Gene Ontology (GO) and Medical Subject Headings (MeSH) in the abstracts,
  • displays the subset of the GO and MeSH relevant to the keywords, and
  • allows you to browse the ontologies and display only papers containing specific GO and MeSH terms.

After performing a search, the resulting abstracts are annotated with your query keywords and GO and MeSH terms. The abstracts are grouped using the GO and MeSH terms, which appear in the text. Now the GO and MeSH hierarchies can be used to systematically explore the search results.

Note that only a subset of all GO and MeSH terms may be relevant to your query. This subset – more frequent terms - is presented on the left hand side. Sorting documents to a highly organised network facilitates the finding of relevant documents significantly.

The hierarchy of content shows the whole GO and MeSH ontologies. GO and MeSH serve as table of contents in order to structure the over 16 million articles of the MEDLINE data base.

About Gene Ontology (GO)
The GO provides a controlled vocabulary to describe gene and gene products in different organisms. GO is a knowledge network containing about 20.000 biological terms. It is built up as a directed acyclic graph starting from three basic areas namely

  • the molecular function of gene products,
  • their role in multi-step biological processes, and
  • their localization to cellular components.

GO terms are classified into only one of the three branches of the ontology. Although the ontology is presented as a tree, it is a network with cross links. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view.

About the Medical Subject Headings (MeSH)
MeSH is the controlled vocabulary thesaurus from National Library of Medicine's. It consists of sets of terms in a hierarchical structure that permits searching at various levels of specificity. At the most general level of the hierarchy are very broad headings such as "Anatomy" or "Diseases". More specific headings are found at more narrow levels.

There are more than 110,000 MeSH concepts in GoPubMed. There are also thousands of cross-references that assist in finding the most appropriate MeSH concept. So it is possible to navigate to a term of interest on different paths. Hence, a term of interest can be reached from quite different points of view. From the eleven levels of the MeSH hierarchy, GoPubMed uses the parts:

  • Anatomy,
  • Biological Sciences,
  • Chemicals and Drugs,
  • Diseases,
  • Health Care,
  • Natural Sciences,
  • Organisms,
  • Psychiatry and Psychology,
  • Techniques and Equipment, and
  • Technology, Industry, Agriculture

For further information, please visit:
http://www.gopubmed.com/

Most Popular Now

Digital ECGs at Barts Health: A High-Imp…

Opinion Article by Dr Krishnaraj Sinhji Rathod, consultant in interventional cardiology, Barts Health NHS Trust. Picture the moment. A patient in an ambulance, enroute to hospital with new chest pain. Paramedics...

Study Sheds Light on Hurdles Faced in Tr…

Implementing artificial intelligence (AI) into NHS hospitals is far harder than initially anticipated, with complications around governance, contracts, data collection, harmonisation with old IT systems, finding the right AI tools...

Using Deep Learning for Precision Cancer…

Altuna Akalin and his team at the Max Delbrück Center have developed a new tool to more precisely guide cancer treatment. Described in a paper published in Nature Communications, the...

New AI Approach Paves Way for Smarter T-…

Researchers have harnessed the power of artificial intelligence (AI) to tackle one of the most complex challenges in immunology: predicting how T cells recognize and respond to specific peptide antigens...

Study Used AI Models to Improve Predicti…

Chronic kidney disease (CKD) is a complex condition marked by a gradual decline in kidney function, which can ultimately progress to end-stage renal disease (ESRD). Globally, the prevalence of the...

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...