AI could Crack the Language of Cancer and Alzheimer's

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.

Big data produced during decades of research was fed into a computer language model to see if artificial intelligence can make more advanced discoveries than humans.

Academics based at St John's College, University of Cambridge, found the machine-learning technology could decipher the 'biological language' of cancer, Alzheimer's, and other neurodegenerative diseases.

Their ground-breaking study has been published in the scientific journal PNAS today (April 8 2021) and could be used in the future to 'correct the grammatical mistakes inside cells that cause disease'.

Professor Tuomas Knowles, lead author of the paper and a Fellow at St John's College, said: "Bringing machine-learning technology into research into neurodegenerative diseases and cancer is an absolute game-changer. Ultimately, the aim will be to use artificial intelligence to develop targeted drugs to dramatically ease symptoms or to prevent dementia happening at all."

Every time Netflix recommends a series to watch or Facebook suggests someone to befriend, the platforms are using powerful machine-learning algorithms to make highly educated guesses about what people will do next. Voice assistants like Alexa and Siri can even recognise individual people and instantly 'talk' back to you.

Dr Kadi Liis Saar, first author of the paper and a Research Fellow at St John's College, used similar machine-learning technology to train a large-scale language model to look at what happens when something goes wrong with proteins inside the body to cause disease.

She said: "The human body is home to thousands and thousands of proteins and scientists don't yet know the function of many of them. We asked a neural network based language model to learn the language of proteins.

"We specifically asked the program to learn the language of shapeshifting biomolecular condensates - droplets of proteins found in cells - that scientists really need to understand to crack the language of biological function and malfunction that cause cancer and neurodegenerative diseases like Alzheimer's. We found it could learn, without being explicitly told, what scientists have already discovered about the language of proteins over decades of research."

Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function and regulation of the body's tissues and organs - antibodies, for example, are a protein that function to protect the body.

Alzheimer's, Parkinson's and Huntington's diseases are three of the most common neurodegenerative diseases, but scientists believe there are several hundred.

In Alzheimer's disease, which affects 50 million people worldwide, proteins go rogue, form clumps and kill healthy nerve cells. A healthy brain has a quality control system that effectively disposes of these potentially dangerous masses of proteins, known as aggregates.

Scientists now think that some disordered proteins also form liquid-like droplets of proteins called condensates that don't have a membrane and merge freely with each other. Unlike protein aggregates which are irreversible, protein condensates can form and reform and are often compared to blobs of shapeshifting wax in lava lamps.

Professor Knowles said: "Protein condensates have recently attracted a lot of attention in the scientific world because they control key events in the cell such as gene expression - how our DNA is converted into proteins - and protein synthesis - how the cells make proteins.

"Any defects connected with these protein droplets can lead to diseases such as cancer. This is why bringing natural language processing technology into research into the molecular origins of protein malfunction is vital if we want to be able to correct the grammatical mistakes inside cells that cause disease."

Dr Saar said: "We fed the algorithm all of data held on the known proteins so it could learn and predict the language of proteins in the same way these models learn about human language and how WhatsApp knows how to suggest words for you to use.

"Then we were able ask it about the specific grammar that leads only some proteins to form condensates inside cells. It is a very challenging problem and unlocking it will help us learn the rules of the language of disease."

The machine-learning technology is developing at a rapid pace due to the growing availability of data, increased computing power, and technical advances which have created more powerful algorithms.

Further use of machine-learning could transform future cancer and neurodegenerative disease research. Discoveries could be made beyond what scientists currently already know and speculate about diseases and potentially even beyond what the human brain can understand without the help of machine-learning.

Dr Saar explained: "Machine-learning can be free of the limitations of what researchers think are the targets for scientific exploration and it will mean new connections will be found that we have not even conceived of yet. It is really very exciting indeed."

The network developed has now been made freely available to researchers around the world to enable advances to be worked on by more scientists.

For further information, please visit:
https://deephase.ch.cam.ac.uk

Saar KL, Morgunov AS, Qi R, Arter WE, Krainer G, Lee AA, Knowles TPJ.
Learning the molecular grammar of protein condensates from sequence determinants and embeddings.
Proc Natl Acad Sci U S A. 2021. doi: 10.1073/pnas.2019053118

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...