University Hospital Giessen Performs First Minimally Invasive, Robotic-Assisted Coronary Intervention in Germany

Siemens HealthineersThe University Hospital Giessen is the first hospital in Germany where a robotic system assists in a minimally invasive procedure to place a stent into a narrowed coronary artery to reopen it. This percutaneous coronary intervention (PCI) was carried out by the team of Prof. Holger Nef, Deputy Clinical Director Medical Clinic I, Cardiology and Angiology, University Giessen. To control interventional devices, doctors use the endovascular robotic system, CorPath® GRX (1) from Corindus, a Siemens Healthineers company, together with an Artis angiography system from Siemens Healthineers.

"Detailed imaging in combination with robotic-assisted intervention can provide increased precision to minimally invasive therapy. Especially complex procedures can be standardized and potentially provide better clinical results. I am very pleased that we were able to successfully use our imaging system and endovascular robotic platform at the University Hospital Giessen and Marburg in a procedure," said Doris Pommi, General Manager Cardiovascular Care at Siemens Healthineers.

Corindus' robotic system allows physicians to precisely control catheters, guidewires, balloons and stents with the help of integrated imaging for minimally invasive procedures. The doctor does not have to be physically next to the angiography table as usual, but can control the procedure via the system’s control module and is thus exposed to less radiation.

"The robotic system allows the precise positioning of interventional devices. This is crucial for the procedural success of the PCI procedure and can help improve long-term patient benefits. If coronary lesions are not fully covered by stents, this is a significant risk factor for follow-up interventions caused by re-stenosis," said Prof. Christian Hamm, Clinic Director Medical Clinic I, Cardiology/Angiology, University Giessen.

Technical advances in interventional cardiology can make it possible to successfully perform even more complex procedures routinely, like multi-vascular diseases, main stem stenosis, bifurcation stenosis or even re-openings of chronic closures. "Especially in these interventions, precision through robotic support, as well as the reduction of radiation exposure, can be of fundamental importance," said Prof. Holger Nef.

Coronary heart disease is one of the most common cardiovascular diseases in Western industrialized nations. Its consequences, such as acute heart attacks, are among the most common causes of death in Germany. In the treatment of acute and chronic coronary syndrome, PCI with stent implantation has established itself as the gold standard and is recommended in the European treatment guidelines.

About Siemens Healthineers

Siemens Healthineers AG (listed in Frankfurt, Germany: SHL) is shaping the future of Healthcare. As a leading medical technology company headquartered in Erlangen, Germany, Siemens Healthineers enables healthcare providers worldwide through its regional companies to increase value by empowering them on their journey towards expanding precision medicine, transforming care delivery, improving the patient experience, and digitalizing healthcare. Siemens Healthineers is continuously developing its product and service portfolio, with AI-supported applications and digital offerings that play an increasingly important role in the next generation of medical technology. These new applications will enhance the company’s foundation in in-vitro diagnostic, image-guided therapy, and in-vivo diagnostics. Siemens Healthineers also provides a range of services and solutions to enhance healthcare providers ability to provide high-quality, efficient care to patients. In fiscal 2019, which ended on September 30, 2019, Siemens Healthineers, which has approximately 52,000 employees worldwide, generated revenue of €14.5 billion and adjusted profit of €2.5 billion.

About Corindus

Corindus, a Siemens Healthineers company, is a global technology leader in robotic-assisted vascular interventions. The Company’s CorPath® platform is the first FDA-cleared medical device to bring robotic precision to percutaneous coronary and vascular procedures. CorPath GRX is the second-generation robotic-assisted technology offering enhancements to the platform by adding important key upgrades that increase precision, improve workflow, and extend the capabilities and range of procedures that can be performed robotically. We are focused on developing innovative robotic solutions to revolutionize treatment of emergent conditions by providing specialized and timely medical care to patients around the world.

1. The products/features (mentioned herein) are not commercially available in all countries. Their future availability cannot be guaranteed. Detailed information is available from the local Siemens Healthineers organization.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...