Syngo DynaCT Cardiac from Siemens: 3D Images for Cardiovascular Imaging

Siemens HealthcareAt the ESC (European Society of Cardiology) Congress 2009, Siemens will be demonstrating a new cardiac application for the syngo DynaCT Cardiac imaging application. During transfemoral aortic valve replacement, a heart valve prosthesis gets implanted via peripheral artery access. To position aortic valve prostheses accurately, the cardiologist must have very precise knowledge of the individual anatomy of the patient's aorta. That's where syngo DynaCT Cardiac comes in: During the intervention, it generates CT-like cross-sectional images on an angiographic C-arm system and offers 3D reconstruction of the aortic root. These 3D images can be overlaid on actual fluoroscopic images and provide a kind of three-dimensional roadmap for the examiner. Thus, with syngo DynaCT Cardiac, the cardiologist can position the valve prosthesis more accurate and more quickly than before.

For most patients worldwide, open heart surgery is performed for the placement of an aortic valve prosthesis. The most frequent reason for this intervention is the constriction of the valve, so-called aortic valve stenosis, which occurs primarily in elderly persons. In the course of time the valve loses elasticity and no longer fully opens. This decreases the flow of blood, and the organs no longer receive a sufficient supply of oxygen. Normally, the operation requires opening the sternum. The heart has to be temporarily stopped and its function taken over by a heart-lung machine. Especially for elderly and severely ill patients with accompanying diseases such as heart failure, renal failure and diabetes, such an intervention is risky.

Recently, new procedures have been developed in which the the aortic valve prosthesis is implanted in the heart using a catheter rather than through the usual open heart surgery. This involves an intervention often performed jointly by the cardiologist and the heart surgeon. First, through a small incision in the groin artery, a special balloon catheter is guided to the heart to dialate the stenosed aortic valve. Then, a collapsed heart valve is also inserted up to the valve level via a balloon catheter; there it is unfolded and attached to the surrounding tissue with a so called "stent".

For such complex transcatheter techniques, high-performance angiographic systems like those in the Siemens Artis zee family are used, since they provide the best possible imaging, even in a completely sterile OR environment. With these systems physicians can follow the minimally invasive intervention on an X-ray screen while directly monitoring the function of the valve prosthesis, which can possibly spare the patient postoperative measures.

Prior to such interventions it is imperative that the cardiologist gets a comprehensive picture of the heart and vessels. Previously, this normally required imaging with CT scanners or MRI systems, which led to additional costs. For this reason, Siemens (as the first company in the medical field in 2004) developed an application that can generate CT-like 3D images directly on an angiography system: Syngo DynaCT. The application has been continually fine-tuned and developed, so that today it combines the advantages of three-dimensional CT imaging with live X-ray imaging of the beating heart in one examination and on a single system. The CT-like images of the heart are produced by rotating the C-arm at high speed around the patient. In this way, several hundred images are acquired and reconstructed as 3D volumes. If the acquisition is triggered via the patient ECG, even time-dependent 3D volumes can be generated for visualization of the beating heart. The complete 3D image is available in less than a minute. Anatomical structure segments are overlaid with the live X-ray image, allowing the physician to navigate with the catheter quickly and confidently without the use of a contrast medium.

Related news articles:

About Siemens Healthcare
The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens is the only company to offer customers products and solutions for the entire range of patient care from a single source - from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 49,000 employees worldwide and operates in over 130 countries. In fiscal year 2008 (to September 30), the Sector posted revenue of 11.2 billion euros and profit of 1.2 billion euros. For further information please visit: www.siemens.com/healthcare.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...