SemanticMining

The main concern of SemanticMining have been semantic interoperability, which simply means that meaning is preserved in communication between information systems, a condition which should be natural but has proven to be very hard to achieve, especially so in the complex application area of health care.

An overall objective of the European research programmes in the sixth framework has been the identification and filling of gaps in the European research infrastructure, to facilitate cross-fertilisation between scientific disciplines and to establish a durable structure for such a collaborative approach. SemanticMining is composed of partners from computer science, systems engineering, biomedical informatics, and public health care organisations, all bringing their experience and in-depths knowledge together into a common framework. A bridging activity addressed was knowledge transfer and co-operation between academia and organisations in the health and welfare sector, including standardisation bodies and the different public and private institutions involved in health care delivery and management. The national institutes and organisations responsible for policy making and quality management with a regulatory function will have an important role to play in the exchange of ideas and experiences.

A main concern of SemanticMining has been semantic interoperability in communication between health care information systems. The long-term goal of SemanticMining has been the development of generic methods and tools supporting the critical tasks of the field: data mining, knowledge discovery, knowledge representation, abstraction and indexing of information, semantic-based information retrieval in a complex and high-dimensional information space.

For further information, please visit:
http://www.semanticmining.org

Project co-ordinator:
Hans Åhlfeldt (Linköping University, Sweden)

Partners:
SemanticMining is based on the partnership of 23 partners from 11 European countries with approximately 100 identified researchers (25 female) and 35 associated PhD students (10 female).

Timetable: from 01/2004 - to 06/2007

Total cost: € 6,384,000

EC funding: € 5,000,000

Instrument: NoE

Project Identifier: IST-2002-507505

Source: FP6 eHealth Portfolio of Projects

Most Popular Now

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...