Optimising the Delivery of Stroke Care

The development of innovative ultrasound imaging equipment within the UMEDS project aims to provide for mobile stroke detection. When linked to advanced telemedicine systems, such diagnostic equipment could offer valuable information to guide prehospital thrombolysis.

In patients with acute cerebral ischemia, brain perfusion can be analysed by means of different diagnostic techniques, including computed and magnetic resonance tomography among others. However, it is the continuous development of non-invasive ultrasound techniques that has provided invaluable clinical applications for the assessment of intracranial arterial diseases.

Ultrasound can be utilised at the bedside for critically ill patients and provide timely information on arterial dissection and occlusion of brain arteries, as well as embolic occlusion. The concept of ultrasound perfusion analysis was not new; but the ability to estimate perfusion parameters with accuracy has only been made possible with recent developments in ultrasonographic imaging techniqes.

Localisation of specific biochemical epitopes with targeted contrast agents afforded the opportunity for imaging thrombus material in acute vessel occlusions. It also provides an effective means for the detection of micro-embolic signals. Moreover, software development at the INSERM laboratories in France has allowed rapid electronic transfer of data from the detector arrays and rapid image reconstruction for subsequent perfusion analysis.

Studies were undertaken to ascertain the optimal delivery mode of microbubbles with antibodies to activate platelets for targeted imaging, and the results were integrated into the image analysis software. The new software supports the automatic factor analysis of medical image sequences (FAMIS), along with the conventional parametric analysis of temporally arranged sequences.

To minimise respiratory motion artefacts in ultrasound contrast imaging sequences, and furthermore to improve parametric and FAMIS imaging from time sequences, dedicated software developed in MATLAB was added. The software package, readily available on a CD-ROM, can be implemented either step-by-step under the permanent supervision of the user or automatically both for clinical and pharmaceutical research applications.

For further information, please visit:

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...