Virtual Human Offers Insights Into HIV Drug Efficacy

EU-funded scientists have used a prototype of a Virtual Physiological Human (VPH) to simulate the efficacy of an HIV drug in blocking a key protein used by the virus. The VPH concept involves linking networks of computers from around the world to simulate the inner workings of the human body. With it, scientists can study the effects of a drug and see what is happening at the organ, tissue, cell and molecular levels.

Currently, the VPH is still in the early stages of development, but researchers hope that eventually doctors will be able to use it to develop personalised treatments for their patients.

In this latest study, scientists from University College London (UCL) in the UK ran simulations to predict how strongly the HIV-inhibiting drug saquinavir would bind to three versions of a viral protein called HIV-1 protease. The protein is used by the virus to propagate itself, and mutated forms of the protein are associated with resistance to saquinavir. The results are published in the Journal of the American Chemical Society.

Saquinavir is just one of nine drugs designed to block HIV-1 protease. Currently, doctors have no way to match the drugs to the profile of the virus as it mutates in each patient. Instead, they simply prescribe a course of drugs and see if they are working by analysing the patient's immune response.

In the future, these 'trial and error' methods could be phased out as doctors could use the VPH to see which drugs would be most effective in any given patient. However, the computing power required to run these simulations is immense; for this latest study, the sequence of simulations was carried out across several supercomputers on both the UK's National Grid Service and the US TeraGrid.

The work took two weeks and used the same amount of computing power as that needed to perform a long-range weather forecast. The scientists hope that in the future, technological advances could bring down the costs of carrying out such simulations so that health services can afford to pay for them.

"This study represents a first step towards the ultimate goal of 'on-demand' medical computing, where doctors could one day 'borrow' supercomputing time from the national grid to make critical decisions on life-saving treatments," explained Professor Peter Coveney of UCL, who led the research.

"For example, for an HIV patient, a doctor could perform an assay to establish the patient's genotype and then rank the available drugs' efficacy against that patient's profile based on a rapid set of large-scale simulations, enabling the doctor to tailor the treatment accordingly."

Professor Coveney and his team are now looking at all the protease inhibitor drugs in the same way.

EU support for the study came from the ViroLab (A virtual laboratory for decision support in viral diseases treatment) project, which is funded under the Information society technologies thematic area of the Sixth Framework Programme.

Meanwhile, Professor Coveney is also involved in the VPH Initiative, which has received €72 million from the Seventh Framework Programme (FP7). The initiative aims to boost collaboration between clinicians and scientists to explore the possibilities of patient-specific medical treatments based on the latest modelling and simulation methods.

For further information, please visit:

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...