Project to Develop Bat-Like Sonar for Robotic Systems

A new EU-funded project will delve into the mysteries of bat sonar. Building on the findings of the CIRCE (Chiroptera Inspired Robotic Cephaloid) and the CILIA (Customized Intelligent Life-Inspired Arrays) projects, the ChiRoPing project will attempt to develop two biomimetic models of bats, using reverse engineering.

Ultimately, the aim is to find a way to engineer versatile and robust systems that are 'able to respond sensibly to challenges not precisely specified in their design', the project partners explain. A sonar component to these systems could complement vision and make it possible to use them in situations where vision is limited or they have to operate blind.

The two models, to be designed by roboticists and bat ethologists in close cooperation, will be based on the common big-eared bat (Micronycteris microtis) and the long-legged bat (Macrophyllum macrophyllum), two bat species indigenous to South and Central America, as well as Daubenton's bat (Myotis daubentonii), a bat species found throughout Europe, but also as far as Japan and Korea, and a member of the Bulldog or Fisherman bat family (Noctilio lepornius).

The researchers chose bats for inspiration because 'their astounding diversity of diet and habitat attests to their success in integrating morphological, acoustic and behavioural parameters to enable robust and versatile hunting behaviours - the bat equivalent of tangible object handling'.

Before actually starting the engineering part of the project, however, the scientists will have to identify and measure the relevant acoustic and morphological parameters of the bat species in question and reconstruct the 'bat's acoustic experience as it flies through natural hunting tasks'. So far, little is known about exactly how bats use their skills to make acoustic, behavioural or morphological choices when hunting in their varied habitats.

On the basis of the data gathered, the project partners plan to create computational models of how bats coordinate their choices, and later implement robotic systems which will be evaluated from an engineering standpoint as well as a biological point of view.

However, the ChiRoPing researchers will not have to start from scratch as the CIRCE project already developed and constructed a bionic bat head, consisting of an emission/reception system capable of generating and processing bat vocalisations in real-time. The head, which will be used in the framework of the new project, will help to systematically investigate how the world is not just perceived, but actively explored by the animals.

The ChiRoPing project is set to start on 1 February. It will receive ¿2.5 million in funding from the EU under the Seventh Framework Programme (FP7) and bring together four partner universities from Denmark, Belgium, the UK and Germany.

For further information, please visit:
http://www.chiroping.org

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...