Open Call SC1-DTH-12-2020: Use of Real-World Data to Advance Research on the Management of Complex Chronic Conditions

European CommissionThe number of people with chronic illness is growing and almost half of them have multiple chronic conditions. Patients with complex chronic conditions (CCCs) have chronic multi-morbidities or chronic disease complications that require the attention of multiple health care providers or facilities as well as home-based care. A patient with CCC presents to the health care system with unique constellation of needs, disabilities, or functional limitations.

Managing patients with complex chronic conditions therefore needs approaches that ensure multi-disciplinary, personalised and well accepted by the patient ways of care and monitoring.

The controlled randomised clinical trials on chronic diseases provide important information that can be translated in the daily clinical practice, but they often do not comprise sufficient breadth and depth commensurate to the complexity of diseases, and to the degree of personalisation of treatment needed.

Real World Data (referring specifically to any type of data not collected in a randomised clinical trial) can complement these to fill the knowledge gap between controlled clinical trials results and clinical practice needs in real environments. They can provide new insights into disease patterns and help improve the safety and effectiveness of health interventions.

Tapping into this rich resource of 'real world data' issued from daily clinical practice, either collected on a permanent/regular basis by public bodies or through devices and mobile applications, and smartly assembled in combination with clinical studies, should boost both output and relevance of controlled clinical research results.

Scope

The topic will support clinical research integrating Real World Data from clinical practice or from patient's daily life and linking them with data collected with a research purpose if relevant.).

The research focus will be on the use of real world data, either newly acquired or from existing sources (such as data from clinical professional societies/associations, cohorts, registers, biobanks or collected through genome research initiatives) to improve the clinical management of adults with complex chronic conditions. The use of new technologies for data analytics and interpretation such as artificial intelligence and computer modelling are encouraged.

The proposed intervention should allow better treatment or monitoring of the person and thus changes in disease progression and/or therapy response. Quality of life, patient safety, psychosocial aspects and well-being are important determinants of complex health conditions and should be addressed whenever relevant. The research should also assess the potential and use of RWD for different health authorities like regulators of safety and quality or health technology assessment bodies. Nevertheless, research has to take duly into account sex and gender differences.

The proposed intervention must add clinical value as well as societal benefits and show feasibility and sustainability in real-life settings. In order to ensure acceptability and sustainability of the intervention early involvement of patients and care providers in the design of the research is considered essential. Similarly, proposals should duly take into account the diversity of health systems in different regions of Europe.

Data protection, data privacy and ethical issues have to be carefully considered as personal data from different sources are to be linked in the course of the proposed research. Data sets assembled under the project, including the linkage to ‘real world data’ should be preserved in a sustainable and accessible way so as to enable future research on the targeted CCC, thus contributing to the overall imperative of Open Science.

Research that focuses on self-management only is not in the scope of this topic. Research on rare and/or infectious diseases are supported through other sections of the programme and are excluded from the scope of this topic.

The Commission considers that proposals requesting a contribution from the EU of between EUR 4 and 6 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected Impact

  • Demonstrate the potential of the use multi-disciplinary multi-source Real World Data to advance clinical research on complex chronic conditions;
  • Demonstrate potential and use of RWD, in particular RWD from disease-specific professional societies/associations, by health authorities to understand safety, quality and effectiveness of therapies;
  • Improve the clinical outcomes as well as quality of life of patients living with CCCs;
  • Advance the understanding of management of complex diseases including the interdependence of co-morbidities, thus underpinning evidence based therapies and prognostic approaches;
  • Further development of new technological tools and platforms for advanced data management;
  • Contribution to the cross-border health data exchange and to the goals of the Digital Single Market.

Opening date: 04 July 2019

Deadline: 07 April 2020 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: Research and Innovation Action (RIA)

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/sc1-dth-12-2020

PS: Find your partners or consortia preparing a project proposal
If you need help to identify a potential partner with particular competences, facilities or experience, please join and explore (HEALTH IT) SPACE www.healthitspace.eu.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...