Research Institutes from Finland and Singapore Develop Remote Healthcare Services

VTT Technical Research Centre of Finland and A*STAR Agency for Science, Technology and Research from Singapore have developed remote healthcare services that allow patients to be treated globally independent of time and location and irrespective of the solutions provided by hardware and data system suppliers. In Finland, the first trial services for treating cardiac patients and patients suffering from chronic illnesses have been promising. Concurrently, A*STAR kick-started its trial in Singapore on the monitoring of sleep pattern of senior patients and gathered results for deeper analysis by physicians.

For VTT, the new remote healthcare service has been tested during the autumn for treating cardiac patients in Finland. In addition to VTT and Emtele Oy, Comptel Oyj and the Cardiology Centre of the Pirkanmaa Hospital District have participated in the trials. Emtele Oy provides a new business concept for data management services.

The IT service is based on a standards-compliant data traffic and management platform, to which the health monitoring and measuring instruments of different manufacturers can be connected in an interoperable manner. The Internet-based service platform GHMP (Global Health Monitoring Platform) enables remote healthcare services provided across organisational boundaries, time zones and country borders. All the parties in the value chain are required in implementing the service: the measuring instrument supplier, service operator, the supplier of data processing applications and the consultant physician service.

The trial, carried out in the area of operation of the Tampere Cardiology Centre, also has the involvement of the local Health Centre and Emergency Outpatient Clinic; they can send the patient’s EKG graph and a consultation request to the on-duty cardiologist at the Cardiology Centre. The consultant cardiologist is informed about the consultation request by e-mail, allowing him/her to analyse the EKG graph at his/her workstation.

Attached to the request, the cardiologist receives the patients background details to assist in drawing up the consultant’s report. Combining these with the EKG findings, the consultant makes the initial diagnosis and a recommendation for the patient’s treatment. The consultation request and reply are entered on electronic forms that can be attached to the electronic patient record. In the remote service trial, the consultation request is conveyed to the expert via the PIR document service developed by VTT. The EKG graph is analysed in the digital EKG archive of the Laboratory Centre of the Pirkanmaa Hospital District. The consultation form has not been integrated in the electronic patient record as yet.

In Finland, the initial experience of the tested consultation services is positive. During the very first weeks of the trial, cases of arrhythmia were diagnosed, medication amended and high-risk patients were identified following consultations.

It is likely that remote care will allow limited healthcare resources to be allocated more systematically. Experience gained in other countries from remote consultations by cardiologists is encouraging.

Besides acute cardiac monitoring, the GHMP system can be utilised in other healthcare areas as well. This is intended to be demonstrated in the use-case scenario studied by A*STAR, where the objective is to monitor the sleep activity pattern of elderly patients in order to assess patients’ quality of sleep. It has been established that sleep is closely related to physical wellbeing, and disturbed sleep patterns have been shown to be linked to medical conditions such as stress and cardiovascular diseases.

In this trial, a patient would wear an accelerometer sensor for extensive periods each day. Activity data is transmitted continuously using a Bluetooth interface to a 3G-enabled phone which is placed in the proximity of the patient’s location. The mobile phone connects to the internet and to the server located within A*STAR using 3G or GPRS connectivity.

A*STAR has developed intelligent algorithms on smart phones which are capable of capturing activity signals received from the wearable sensors. This information can be accessed anytime, anywhere via a password protected web portal. During the trial, the collection of information is carried out at the server residing in A*STAR. The server will eventually be replaced with the GHMP system, with the physiological signals relayed over the internet. This realises the objective the project sets out to achieve, which is, enabling remote healthcare services to transcend across geographical borders and time zones.

It is hoped that the pilot trial carried out by A*STAR in Singapore will provide a substantial pool of results for deeper analysis of the relationship between disturbed sleep patterns and certain medical conditions.

VTT and A*STAR will continue to explore new potential areas for collaboration in eHealth, such as text mining of medical annotation and mining of genetic information, eHealth services, cardiac and video monitoring systems for home care or mobile care systems, leveraging on the foundation established to bring R&D co-operation to the next level.

Remote monitoring systems combined with a well-functioning healthcare organisation will improve the quality of life of patients in need of regular monitoring by a doctor, because treatment does not always require a stay in the hospital. Some patients suffering from chronic illnesses can be treated at home, without having to occupy hospital beds. The contribution and expertise of healthcare personnel can be focused on those really in need of help.

IT solutions will help with the increasing need for services in healthcare. People are seeking more individual treatments and better service. At the same time, the ageing population and chronic illnesses considerably increase the number of treatment sessions and healthcare expenditure.

About the Agency for Science, Technology and Research (A*STAR)
A*STAR is Singapore's lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, Physical Sciences and Engineering, with a particular focus on fields essential to Singapore's manufacturing industry and new growth industries. It oversees 14 research institutes, 7 research consortiums and supports extramural research with the universities, hospital research centres and other local and international partners.

Six Research Institutes under A*STAR's Science and Engineering cluster will be relocating in early 2008 to Fusionopolis, Singapore's physical sciences and engineering hub of the future. These public research institutes will be co-located with the private sector R&D labs and will complement capabilities and collaborations with ongoing biomedical research in Biopolis. Fusionopolis will feature state-of-the-art facilities and technology test-bedding infrastructure built with the aim of fostering innovation, experimentation and collaboration between public sector research institutes and private sector labs.

For more information, please visit www.a-star.edu.sg.

About VTT Technical Research Centre of Finland
VTT Technical Research Centre of Finland is an impartial expert organisation. Its objective is to develop new technologies, create new innovations and value added thus increasing customer's competitiveness. With its know how VTT produces research, development, testing and information services to public sector and companies as well as international organisations.

For more information, please visit www.vtt.fi.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...