Context-aware Service Coordination in Mobile P2P Environments

CASCOMCASCOM's main objective is to develop, implement, validate, and trial of intelligent, context-aware agent-based service coordination infrastructure for innovative Semantic Web service discovery, composition, and execution across mobile and fixed peer-to-peer service networks.

The essential approach of CASCOM is the innovative combination of agent technology, semantic Web services, peer-to-peer, and mobile computing for intelligent peer-topeer mobile service environments. The services of CASCOM environment are provided by agents exploiting the CASCOM coordination infrastructure to efficiently operate in highly dynamic environments. The CASCOM intelligent peer-topeer (IP2P) infrastructure includes efficient communication means, support for context-aware adaptation techniques, as well as dynamic service discovery and composition planning.

CASCOM will implement and trial value-added support for business services for mobile workers and users across mobile and fixed networks. The vision of the CASCOM approach is that ubiquitous application services are flexibly co-ordinated and pervasively provided to the mobile users by agents in dynamically changing contexts of open, pervasive environments.

For end users, the CASCOM system provides seamless access to semantic Web services anytime, anywhere, and using any device. This gives freedom to mobile workers to do their business whenever and wherever needed. For network operators, CASCOM aims towards vision of seamless service experience providing better customer satisfaction. For service providers, CASCOM provides an innovative platform for business application services.

The project will carry out highly innovative research aimed at providing a framework for agent-based data and service coordination in IP2P environments. CASCOM will integrate and extend existing technologies in areas such as agent-based mobile computing, service co-ordination, and P2P computing in mobile environments. A generic, open IP2P service environment with its agents and co-ordination mechanisms will be prototypically implemented and deployed in CASCOM mostly as open-source software enabling instant take-up and use within European and world community.

In general, it is expected that the outcomes of CASCOM will have significant impact on the creation of a next-generation global, large-scale intelligent service environment. Both, research results on methods for service provision, discovery, composition and monitoring, and the deployed prototype of an open IP2P service environment in the context of nomadic computing will advance the state of the art of European and world knowledge in areas related to the deployment of services in open systems.

Technical Approach
Software agents will be a key technology to address the challenges of the CASCOM. IP2P networks provide an environment for agents to collaborate as peers sharing information, tasks, and responsibilities with each other. Agents help to manage the P2P network complexity, and they will improve the functionality of conventional P2P systems. Our innovations in this domain will concern the development of context-aware agentbased semantic Web services, and flexible resource-efficient co-ordination of such services in the nomadic computing field.

Service co-ordination mechanisms can be applied to multi-agent systems to improve their efficiency. Although this may be accepted on a conceptual level, the combination of agents and P2P environments certainly deserves more innovative research, especially regarding nomadic environments. In CASCOM, we will investigate mechanisms for service discovery algorithms for dynamic IP2P environments. The problem of service co-ordination can be split into several sub problems: discovery, composition planning, execution monitoring, and failure recovery. CASCOM will advance the state of the art by carrying out innovative research on how these problems can be solved in IP2P environments. Especially, CASCOM will provide flexible and efficient matching algorithms to be performed in large scale and resource limited IP2P environments. Further, CASCOM will develop planning mechanisms that establish plan fragments directly on top of the service directory to solve this problem.

So far, application scenarios have been specified and formal UML-descriptions for all scenarios have been generated. Moreover, the underlying conceptual architecture for IP2P networking as well as the components and methods for the service co-ordination and composition have been defined and partially developed. An integrated demonstrator will be evaluated during trials with end-users.

Consortium

  • DFKI brings to CASCOM its expertise in application oriented research and development of agent systems, knowledge on service discovery and mediation.
  • TeliaSonera has significant experience in data communications, nomadic service provisioning, mobile devices, and agent technology in nomadic environments.
  • EPFL brings its expertise in matchmaking and directory services for Web services, for planning service composition, and for the execution monitoring and failure recovery.
  • ADETTI will provide its expertise on personal agents, dynamic service representation, discovery and composition, adaptive situation aware mechanisms for the service discovery, and trust building mechanisms.
  • UNIBAS has experience of medical informatics and health information systems. Also, UNIBAS has experience in service composition, validation of composite services, and reliable infrastructures for the service execution and processes to CASCOM.
  • FRAMeTech has expertise on agent-based infrastructures taking into account various aspects related to service co-ordination taking security and privacy issues into account.
  • URJC's expertise in CASCOM is in the fields of agent systems and knowledge modelling. URJC's experience in knowledge models, organizational models, and coordination models benefit significantly the consortium.
  • EMA will bring to CASCOM its knowledge and expertise of pervasive emergency healthcare, for the research and development of the CASCOM solutions.

Project coordinator:
Oliver Keller
German Research Centre for Artificial
Intelligence DFKI GMbH
Tel: +49 681 302 5327
Fax: +49 681 302 2235
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
http://www.ist-cascom.org

Most Popular Now

Smartphone Photos can be Used to Detect …

A picture of a person's inner eyelid taken with a standard smartphone camera can be used to screen for anemia, according to a new study published this week in the...

Exscientia Accelerates COVID-19 Drug Dis…

Exscientia has received a grant from the Bill & Melinda Gates Foundation and Gates Philanthropy Partners, as part of the COVID-19 Therapeutics Accelerator. This is to expedite the optimisation of...

Collaboration Between AbbVie, Biogen an…

The access to the world's largest browsable resource linking rare protein-coding genetic variants to human health and disease was launched through a genetic exome sequence analysis collaboration between AbbVie (NYSE:...

It's Going to be Quite a Handover…

Health and social care secretary Matt Hancock has been abruptly replaced by Sajid Javid. The Highland Marketing advisory board consider the huge agenda he is now facing, and what it...

Philips and Cognizant Collaborate to Int…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Cognizant (Nasdaq: CTSH), a world-leading professional services firm, announced a new collaboration to develop end-to-end digital health...

Philips Accelerates Stroke Diagnosis and…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced a strategic partnership agreement with NICO.LAB, a MedTech stroke care company. Together with the recently expanded stroke...

Fujitsu Announces Support of AWS for Hea…

Fujitsu in the UK has announced its support of the AWS for Health initiative from Amazon Web Services (AWS) by bringing Epic in the Cloud to NHS trusts and UK...

Ethics and Governance of Artificial Inte…

Artificial Intelligence (AI) refers to the ability of algorithms encoded in technology to learn from data so that they can perform automated tasks without every step in the process having...

Open Call HORIZON-HLTH-2021-TOOL-06-01: …

This topic aims at supporting activities that are enabling or contributing to one or several expected impacts of destination 5 "Unlocking the full potential of new tools, technologies and digital...

New High-Tech Portal Launched to Speed H…

Researchers at the University of Maryland School of Medicine (UMSOM) launched a new online tool that could more quickly advance medical discoveries to reverse progressive hearing loss. The tool enables...

Artificial Intelligence Models to Analyz…

Artificial intelligence tools and deep learning models are a powerful tool in cancer treatment. They can be used to analyze digital images of tumor biopsy samples, helping physicians quickly classify...

Policy, Progress, Pace: Is the NHS Final…

Opinion Article by Lynette Ousby, UK Managing Director, Alcidion. There is a new energy emerging that might shake up the health tech market, and long-embedded challenges around siloed data and technologies. Political...