New AI Approach Paves Way for Smarter T-cell Immunotherapy and Vaccine Development

Researchers have harnessed the power of artificial intelligence (AI) to tackle one of the most complex challenges in immunology: predicting how T cells recognize and respond to specific peptide antigens. Using AlphaFold 3 (AF3), a AI/ML model, designed for protein structure prediction, the team demonstrated a novel approach to model T cell receptor–peptide/major histocompatibility complex (TCR-pMHC) interactions with growing accuracy.

T cells play a dual role in human health, acting as defenders by eliminating tumors and infected cells while sometimes contributing to disease by targeting the body’s own tissues. At the heart of this balance lies TCR-pMHC recognition, a critical process that determines whether T cells mount a protective response or trigger harmful autoimmunity. Until now, predictive models of TCR specificity have remained limited in accuracy and scope.

"Inspired by recent advances in AI-based structural biology, we sought to evaluate whether AlphaFold could be adapted to predict how T cells recognize epitopes," said Dr. Chongming Jiang, Principal Investigator of the study. "Our findings indicate that AlphaFold can distinguish valid epitopes from invalid ones, moving us closer to reliable, high-throughput prediction of T cell responses."

The research team reports that AlphaFold’s computational modeling enables in silico identification of immunogenic epitopes that could serve as vaccine targets. Beyond prevention, the ability to design higher-affinity and more specific T cells has the potential to enhance the safety and efficacy of T cell-based therapies for cancer, infectious diseases, and autoimmune conditions.

"An accurate prediction model of TCR-pMHC interactions could transform the development of immunotherapies and vaccines," added Dr. Xiling Shen, Chief Scientific Officer at the Terasaki Institute. "This represents a crucial step toward precision medicine approaches that harness the immune system to combat disease."

While the researchers acknowledge that further refinement and validation are required before widespread clinical application, the results highlight the promise of deep learning–based structural modeling as a pathway for the generalizable prediction of TCR-pMHC interactions.

This breakthrough underscores the potential of AI-driven approaches to accelerate drug discovery and immunotherapy design, paving the way for more effective and safer treatments.

Chao Cheng-chi, Chiu Yulun, Yeung Lucas, Yee Cassian, Jiang Chongming, Shen Xiling.
AI/ML-empowered approaches for predicting T Cell-mediated immunity and beyond.
Frontiers in Immunology, 2025. doi: 10.3389/fimmu.2025.1651533

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...