Are You Eligible for a Clinical Trial? ChatGPT can Find Out

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates.

Researchers at UT Southwestern Medical Centre used ChatGPT to assess whether patients were eligible to take part in clinical trials and were able to identify suitable candidates within minutes.

Clinical trials, which test new medications and procedures on the public, are vital for developing and validating new treatments. But many trials struggle to enrol enough participants. According to a recent study, up to 20% of National Cancer Institute (NCI)-affiliated trials fail due to low enrolment. This not only inflates costs and delays results, but also undermines the reliability of new treatments.

Currently, screening patients for trials is a manual process. Researchers must review each patient’s medical records to determine if they meet eligibility criteria, which takes around 40 minutes per patient. With limited staff and resources, this process is often too slow to keep up with demand.

Part of the problem is that valuable patient information contained in electronic health records (EHRs) is often buried in unstructured text, such as doctors’ notes, which traditional machine learning software struggles to decipher. As a result, many eligible patients are overlooked because there simply isn’t enough capacity to review every case. This contributes to low enrolment rates, trial delays and even cancellations, ultimately slowing down access to new therapies.

To counter this problem, the researchers have looked at ways of speeding up the screening process by using ChatGPT. Researchers used GPT-3.5 and GPT-4 to analyse 74 patients’ data to see if they qualified for a head and neck cancer trial.

Three ways of prompting the AI were tested:

  • Structured Output (SO): asking for answers in a set format.
  • Chain of Thought (CoT): asking the model to explain its reasoning.
  • Self-Discover (SD): letting the model figure out what to look for.

The results were promising. GPT-4 was more accurate than GPT-3.5, though slightly slower and more expensive. Screening times ranged from 1.4 to 12.4 minutes per patient, with costs between $0.02 and $0.27.

"LLMs like GPT-4 can help screen patients for clinical trials, especially when using flexible criteria," said Dr. Mike Dohopolski, lead author of the study. "They’re not perfect, especially when all rules must be met, but they can save time and support human reviewers."

This research highlights the potential for AI to support faster, more efficient clinical trials - bringing new treatments to patients sooner.

The study is one of the first articles published in IOP Publishing's Machine Learning series™, the world’s first open access journal series dedicated to the application and development of machine learning (ML) and artificial intelligence (AI) for the sciences.

The same research team have worked on a method that allows surgeons to adjust patients’ radiation therapy in real time whilst they are still on the table. Using a deep learning system called GeoDL, the AI delivers precise 3D dose estimates from CT scans and treatment data in just 35 milliseconds. This could make adaptive radiotherapy faster and more efficient in real clinical settings.

Jacob Beattie et al.
ChatGPT augmented clinical trial screening.
Mach. Learn.: Health, 2025. doi: 10.1088/3049-477X/adbd47

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...