How AI could Speed the Development of RNA Vaccines and other RNA Therapies

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies.

After training a machine-learning model to analyze thousands of existing delivery particles, the researchers used it to predict new materials that would work even better. The model also enabled the researchers to identify particles that would work well in different types of cells, and to discover ways to incorporate new types of materials into the particles.

"What we did was apply machine-learning tools to help accelerate the identification of optimal ingredient mixtures in lipid nanoparticles to help target a different cell type or help incorporate different materials, much faster than previously was possible," says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study.

This approach could dramatically speed the process of developing new RNA vaccines, as well as therapies that could be used to treat obesity, diabetes, and other metabolic disorders, the researchers say.

Alvin Chan, a former MIT postdoc who is now an assistant professor at Nanyang Technological University, and Ameya Kirtane, a former MIT postdoc who is now an assistant professor at the University of Minnesota, are the lead authors of the new study, which appears today in Nature Nanotechnology.

RNA vaccines, such as the vaccines for SARS-CoV-2, are usually packaged in lipid nanoparticles (LNPs) for delivery. These particles protect mRNA from being broken down in the body and help it to enter cells once injected.

Creating particles that handle these jobs more efficiently could help researchers to develop even more effective vaccines. Better delivery vehicles could also make it easier to develop mRNA therapies that encode genes for proteins that could help to treat a variety of diseases.

In 2024, Traverso’s lab launched a multiyear research program, funded by the U.S. Advanced Research Projects Agency for Health (ARPA-H), to develop new ingestible devices that could achieve oral delivery of RNA treatments and vaccines.

"Part of what we’re trying to do is develop ways of producing more protein, for example, for therapeutic applications. Maximizing the efficiency is important to be able to boost how much we can have the cells produce," Traverso says.

A typical LNP consists of four components - a cholesterol, a helper lipid, an ionizable lipid, and a lipid that is attached to polyethylene glycol (PEG). Different variants of each of these components can be swapped in to create a huge number of possible combinations. Changing up these formulations and testing each one individually is very time-consuming, so Traverso, Chan, and their colleagues decided to turn to artificial intelligence to help speed up the process.

"Most AI models in drug discovery focus on optimizing a single compound at a time, but that approach doesn’t work for lipid nanoparticles, which are made of multiple interacting components," Chan says. "To tackle this, we developed a new model called COMET, inspired by the same transformer architecture that powers large language models like ChatGPT. Just as those models understand how words combine to form meaning, COMET learns how different chemical components come together in a nanoparticle to influence its properties - like how well it can deliver RNA into cells."

To generate training data for their machine-learning model, the researchers created a library of about 3,000 different LNP formulations. The team tested each of these 3,000 particles in the lab to see how efficiently they could deliver their payload to cells, then fed all of this data into a machine-learning model.

After the model was trained, the researchers asked it to predict new formulations that would work better than existing LNPs. They tested those predictions by using the new formulations to deliver mRNA encoding a fluorescent protein to mouse skin cells grown in a lab dish. They found that the LNPs predicted by the model did indeed work better than the particles in the training data, and in some cases better than LNP formulations that are used commercially.

Once the researchers showed that the model could accurately predict particles that would efficiently deliver mRNA, they began asking additional questions. First, they wondered if they could train the model on nanoparticles that incorporate a fifth component: a type of polymer known as branched poly beta amino esters (PBAEs).

Research by Traverso and his colleagues has shown that these polymers can effectively deliver nucleic acids on their own, so they wanted to explore whether adding them to LNPs could improve LNP performance. The MIT team created a set of about 300 LNPs that also include these polymers, which they used to train the model. The resulting model could then predict additional formulations with PBAEs that would work better.

Next, the researchers set out to train the model to make predictions about LNPs that would work best in different types of cells, including a type of cell called Caco-2, which is derived from colorectal cancer cells. Again, the model was able to predict LNPs that would efficiently deliver mRNA to these cells.

Lastly, the researchers used the model to predict which LNPs could best withstand lyophilization - a freeze-drying process often used to extend the shelf-life of medicines.

"This is a tool that allows us to adapt it to a whole different set of questions and help accelerate development. We did a large training set that went into the model, but then you can do much more focused experiments and get outputs that are helpful on very different kinds of questions," Traverso says.

He and his colleagues are now working on incorporating some of these particles into potential treatments for diabetes and obesity, which are two of the primary targets of the ARPA-H funded project. Therapeutics that could be delivered using this approach include GLP-1 mimics with similar effects to Ozempic.

Chan A, Kirtane AR, Qu QR, Huang X, Woo J, Subramanian DA, Dey R, Semalty R, Bernstock JD, Ahmed T, Honeywell R, Hanhurst C, Diaz Becdach I, Prizant LS, Brown AK, Song H, Law Cobb J, DeRidder LB, Santos B, Jimenez M, Sun M, Huang Y, Byrne C, Traverso G.
Designing lipid nanoparticles using a transformer-based neural network.
Nat Nanotechnol. 2025 Aug 15. doi: 10.1038/s41565-025-01975-4

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...