DeepSeek-R1 Offers Promising Potential to Accelerate Healthcare Transformation

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm - Future Medicine. The article comprehensively evaluates DeepSeek-R1, a Chinese-developed open-source large language model (LLM), and its potential to transform the healthcare landscape.

Since its release in January 2025 by DeepSeek, DeepSeek-R1 has attracted wide attention for its powerful reasoning abilities, cost efficiency, and transparency in the medical field. Unlike closed-source reasoning models such as ChatGPT-o1, DeepSeek-R1’s open-access approach offers healthcare institutions the flexibility to deploy AI systems while protecting data privacy. For example, Nanfang Hospital of Southern Medical University and primary care clinics in Inner Mongolia have already initiated local applications of DeepSeek-R1 to improve healthcare delivery.

The study highlights how DeepSeek-R1 enhances clinical workflows. It supports diagnostic reasoning, treatment planning, and risk assessment by providing clinicians with transparent reasoning chains and structured decision-making paths. Real-world applications at The University of Hong Kong-Shenzhen Hospital have demonstrated DeepSeek-R1’s role in assisting with medical record analysis and treatment recommendations.

In addition to clinical support, DeepSeek-R1 shows promise in patient engagement and medical education. The model has been used by Shenzhen University-affiliated South China Hospital to generate personalized treatment guidance, improving patient adherence. It has also been applied by Qilu Hospital of Shandong University to create large-scale training materials and interactive educational cases for medical students.

Despite these advances, the article acknowledges key challenges that remain for DeepSeek-R1’s clinical integration. These include the model’s current limitation to text-only data, risks of hallucinated outputs, and the need to balance AI-driven safety recommendations with patient autonomy. The authors call for further research into multimodal capabilities and enhanced retrieval-augmented generation methods to address these issues.

The paper concludes that while DeepSeek-R1 has not yet reached its full potential, it marks a significant step toward reliable and equitable AI-driven healthcare solutions. The authors emphasize that continued efforts in technical refinement and ethical governance will be critical for the safe and effective integration of large language models into healthcare systems globally.

Zhou J, Cheng Y, He S, Chen Y, Chen H.
Large Language Models for Transforming Healthcare: A Perspective on DeepSeek-R1.
MedComm - Future Medicine, 4: e70021, 2025. doi: 10.1002/mef2.70021

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...