Deep Learning can Predict Lung Cancer Risk from Single LDCT Scan

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference.

The model, called Sybil, which was originally developed using National Lung Screening Trial (NLST) data by investigators from the Massachusetts Institute of Technology and Harvard Medical School, could be used to guide more personalized lung cancer screening strategies. It could be an especially valuable tool in Asia, where incidence of lung cancer in nonsmokers is rising, and many people without conventional risk factors don’t meet screening guidelines, researchers said.

"Sybil demonstrated the potential to identify true low-risk individuals who may benefit from discontinuing further screening, as well as to detect at-risk groups who should be encouraged to continue screening," said corresponding author Yeon Wook Kim, MD, a pulmonologist and researcher at Seoul National University Bundang Hospital in Seongnam, Republic of Korea.

Current international guidelines do not recommend lung cancer screening for people considered lower-risk, such as individuals who have never smoked. However, lung cancer rates are rising in this group, and the lung cancer burden in this population is significant.

This disconnect between risk and screening is especially a concern in Asia. The region accounts for more than 60 percent of new lung cancer cases and related deaths globally, with a rising incidence among people who have never smoked, Dr. Kim said. He also noted that the epidemiology of lung cancer in Asia is different from the populations where screening criteria were developed and validated. This has led to an increase in screening that is self-initiated or not consistent with guidelines, but there's a lack of data to suggest who should be screened and who should not.

For the new paper, researchers evaluated more than 21,000 individuals aged 50-80 who underwent self-initiated LDCT screening between 2009 and 2021 and followed their outcomes until 2024. The screening tests were analyzed by Sybil to calculate the risk of future lung cancer diagnosis. The model demonstrated good performance in predicting cancer diagnosis at both one and six years, including in never-smokers.

"Sybil's value lies in its unique ability to predict future lung cancer risk from a single LDCT scan, independent of other demographic factors that are conventionally used for risk stratification," Dr. Kim said.

The model could be used to develop personalized strategies for individuals who have already undergone LDCT screening but have not received further recommendations for additional screening or follow-up. Prospective validation will be needed to confirm the model's potential for clinical use.

Researchers plan to follow up on the study.

"Based on our results, we are eager to conduct a prospective study to further validate and apply Sybil in a pragmatic clinical setting, as well as to enhance the model's ability to predict other important outcomes, such as lung cancer-specific mortality," Dr. Kim said.

YW Kim, J Oh, J Park, M Kim, DY Kim, JG Nam, D-H Joo, C-T Lee.
Validation of Sybil Deep Learning Lung Cancer Risk Prediction Model in Asian High- and Low-risk Individuals.
Am J Respir Crit Care Med 2025;211:A5012. doi: 10.1164/ajrccm.2025.211.Abstracts.A5012

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...