Deep Learning can Predict Lung Cancer Risk from Single LDCT Scan

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference.

The model, called Sybil, which was originally developed using National Lung Screening Trial (NLST) data by investigators from the Massachusetts Institute of Technology and Harvard Medical School, could be used to guide more personalized lung cancer screening strategies. It could be an especially valuable tool in Asia, where incidence of lung cancer in nonsmokers is rising, and many people without conventional risk factors don’t meet screening guidelines, researchers said.

"Sybil demonstrated the potential to identify true low-risk individuals who may benefit from discontinuing further screening, as well as to detect at-risk groups who should be encouraged to continue screening," said corresponding author Yeon Wook Kim, MD, a pulmonologist and researcher at Seoul National University Bundang Hospital in Seongnam, Republic of Korea.

Current international guidelines do not recommend lung cancer screening for people considered lower-risk, such as individuals who have never smoked. However, lung cancer rates are rising in this group, and the lung cancer burden in this population is significant.

This disconnect between risk and screening is especially a concern in Asia. The region accounts for more than 60 percent of new lung cancer cases and related deaths globally, with a rising incidence among people who have never smoked, Dr. Kim said. He also noted that the epidemiology of lung cancer in Asia is different from the populations where screening criteria were developed and validated. This has led to an increase in screening that is self-initiated or not consistent with guidelines, but there's a lack of data to suggest who should be screened and who should not.

For the new paper, researchers evaluated more than 21,000 individuals aged 50-80 who underwent self-initiated LDCT screening between 2009 and 2021 and followed their outcomes until 2024. The screening tests were analyzed by Sybil to calculate the risk of future lung cancer diagnosis. The model demonstrated good performance in predicting cancer diagnosis at both one and six years, including in never-smokers.

"Sybil's value lies in its unique ability to predict future lung cancer risk from a single LDCT scan, independent of other demographic factors that are conventionally used for risk stratification," Dr. Kim said.

The model could be used to develop personalized strategies for individuals who have already undergone LDCT screening but have not received further recommendations for additional screening or follow-up. Prospective validation will be needed to confirm the model's potential for clinical use.

Researchers plan to follow up on the study.

"Based on our results, we are eager to conduct a prospective study to further validate and apply Sybil in a pragmatic clinical setting, as well as to enhance the model's ability to predict other important outcomes, such as lung cancer-specific mortality," Dr. Kim said.

YW Kim, J Oh, J Park, M Kim, DY Kim, JG Nam, D-H Joo, C-T Lee.
Validation of Sybil Deep Learning Lung Cancer Risk Prediction Model in Asian High- and Low-risk Individuals.
Am J Respir Crit Care Med 2025;211:A5012. doi: 10.1164/ajrccm.2025.211.Abstracts.A5012

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...