Generative AI on Track to Shape the Future of Drug Design

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient.

In a new paper, Xia Ning, lead author of the study and a professor of biomedical informatics and computer science and engineering at The Ohio State University, introduces DiffSMol, a generative AI model capable of generating realistic 3D structures of small molecules that can serve as promising drug candidates.

DiffSMol works by analyzing the shapes of known ligands - molecules that bind to protein targets - and using these shapes as conditions to generate novel 3D molecules that better bind to the protein targets. Study results showed that when used to create molecules with the potential to quicken the drug-making process, DiffSmol has a 61.4% success rate, outperforming prior research attempts that achieved success about 12% of the time.

"By using well-known shapes as a condition, we can train our model to generate novel molecules with similar shapes that don’t exist in previous chemical databases," said Ning.

Once DiffSMol learns the shapes of these ligands, the team’s model can also tailor those new molecules to encourage certain binding characteristics. According to the paper, this suggests the model could modify them to have more favorable drug-like properties, altering aspects like their synthesizability or toxicity.

The study was published in Nature Machine Intelligence.

It takes about a decade for a drug to be developed and brought to market, but shortening that time could open up new paths to develop novel pharmaceuticals and agrochemical agents for use in many different industries. Chiefly, compared to existing computational methods used to design drugs, DiffSMol takes only 1 second to generate a single molecule, said Ziqi Chen, co-author of the study and a former doctoral student in computer science and engineering at Ohio State.

"Generative AI models have the potential to substantially expedite this process and improve cost efficiency," said Chen.

To demonstrate DiffSMol’s abilities, researchers conducted case studies on molecules used in two crucial drug targets, one called cyclin-dependent kinase 6 (CDK6), which can regulate cell cycles and disrupt cancer growth, and neprilysin (NEP), which is used in therapies aimed at slowing the progression of Alzheimer's. Their results revealed that the molecules DiffSMol created would likely be very effective, said Ning.

"It's very encouraging for us to find molecules with even better properties than known ligands," she said. "It indicates that our developed models have great potential in identifying good drug candidates."

The researchers also made DiffSMol's code available for other scientists to use.

At the moment, DiffSMol is still only able to generate new molecules based on shapes of previously known ligands, which is a limitation the team hopes to overcome in future work.

Further research will also be aimed at improving the model’s ability to learn from complex molecule data and generate molecules that exhibit a wider range of potential interactions.

Despite the need for more testing, the team anticipates that continued leaps in AI will one day allow their work to reach new heights, partly due to AI's global rise in popularity.

"Nowadays, people are applying these advanced models to molecule generation, to chemistry, to nearly all science areas," said Ning. "This area grows really fast and I don't see it slowing down anytime soon."

Chen Z, Peng B, Zhai T. et al.
Generating 3D small binding molecules using shape-conditioned diffusion models with guidance.
Nat Mach Intell 7, 758–770, 2025. doi: 10.1038/s42256-025-01030-w

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...