AI-Powered Precision: Unlocking the Future of Immunotherapy through Immunogenomics, Radiomics, and Pathomics

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine. The paper underscores the potential of AI to decode complex biological data with unprecedented speed and accuracy. By integrating genomics, medical imaging, and pathology at scale, AI is paving the way for data-driven strategies that bring precision medicine from theory into real-world clinical practice.

In the realm of immunogenomics, AI excels at processing vast quantities of genomic and multi-omic data, identifying patterns and predictive biomarkers linked to immunotherapy responsiveness and prognosis. These insights empower clinicians to design more personalized treatment plans based on a patient's unique molecular signature.

In radiomics, AI-driven algorithms can extract and interpret high-dimensional quantitative features from imaging modalities such as CT, MRI, and PET/CT. These features capture the spatial and temporal heterogeneity of tumors, offering a non-invasive means to monitor disease progression and treatment response in real time. The ability to stratify patients based on imaging phenotypes holds immense promise for tailoring therapies with greater precision.

Pathomics, the AI-based analysis of digital pathology images, provides yet another layer of innovation. AI can detect subtle variations in cellular morphology and tissue architecture that may elude the human eyes. These micro-level insights into the tumor microenvironment are keys to understanding immune interactions and developing novel biomarkers for therapy selection.

Despite remarkable advances, the authors acknowledge ongoing challenges, including data heterogeneity, model interpretability, and multi-modal integration. Nevertheless, the convergence of AI, bioinformatics, and clinical oncology - fueled by interdisciplinary collaboration - is expected to overcome these barriers. The review envisions a future where AI not only augments diagnostic and prognostic accuracy but also catalyzes the development of novel therapeutic targets.

Dr. Xi Wei, the corresponding author, remarks: "Artificial intelligence is not just a tool - it's a transformative force accelerating the shift from empirical treatment to true precision medicine. By bridging immunogenomics, radiomics, and pathomics, we can unlock a new dimension of personalized cancer care."

This work signals a pivotal moment in cancer research, where data integration and algorithmic intelligence unite to advance the frontiers of immunotherapy. As AI continues to evolve, its application in biomarker discovery and treatment optimization promises to enhance patient outcomes, ushering in a new paradigm of individualized medicine.

Chang L, Liu J, Zhu J, Guo S, Wang Y, Zhou Z, Wei X.
Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.
Cancer Biol Med. 2025 Jan 2;22(1):33-47. doi: 10.20892/j.issn.2095-3941.2024.0376

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

Call for Papers: AI Applications in Biom…

JMIR Biomedical Engineering is inviting submissions for a new section titled "AI Applications in Biomedical Engineering." This themed section explores the integration of biomedical engineering and artificial intelligence (AI), focusing...