AI-Powered Precision: Unlocking the Future of Immunotherapy through Immunogenomics, Radiomics, and Pathomics

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine. The paper underscores the potential of AI to decode complex biological data with unprecedented speed and accuracy. By integrating genomics, medical imaging, and pathology at scale, AI is paving the way for data-driven strategies that bring precision medicine from theory into real-world clinical practice.

In the realm of immunogenomics, AI excels at processing vast quantities of genomic and multi-omic data, identifying patterns and predictive biomarkers linked to immunotherapy responsiveness and prognosis. These insights empower clinicians to design more personalized treatment plans based on a patient's unique molecular signature.

In radiomics, AI-driven algorithms can extract and interpret high-dimensional quantitative features from imaging modalities such as CT, MRI, and PET/CT. These features capture the spatial and temporal heterogeneity of tumors, offering a non-invasive means to monitor disease progression and treatment response in real time. The ability to stratify patients based on imaging phenotypes holds immense promise for tailoring therapies with greater precision.

Pathomics, the AI-based analysis of digital pathology images, provides yet another layer of innovation. AI can detect subtle variations in cellular morphology and tissue architecture that may elude the human eyes. These micro-level insights into the tumor microenvironment are keys to understanding immune interactions and developing novel biomarkers for therapy selection.

Despite remarkable advances, the authors acknowledge ongoing challenges, including data heterogeneity, model interpretability, and multi-modal integration. Nevertheless, the convergence of AI, bioinformatics, and clinical oncology - fueled by interdisciplinary collaboration - is expected to overcome these barriers. The review envisions a future where AI not only augments diagnostic and prognostic accuracy but also catalyzes the development of novel therapeutic targets.

Dr. Xi Wei, the corresponding author, remarks: "Artificial intelligence is not just a tool - it's a transformative force accelerating the shift from empirical treatment to true precision medicine. By bridging immunogenomics, radiomics, and pathomics, we can unlock a new dimension of personalized cancer care."

This work signals a pivotal moment in cancer research, where data integration and algorithmic intelligence unite to advance the frontiers of immunotherapy. As AI continues to evolve, its application in biomarker discovery and treatment optimization promises to enhance patient outcomes, ushering in a new paradigm of individualized medicine.

Chang L, Liu J, Zhu J, Guo S, Wang Y, Zhou Z, Wei X.
Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.
Cancer Biol Med. 2025 Jan 2;22(1):33-47. doi: 10.20892/j.issn.2095-3941.2024.0376

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...