SALSA: A New AI Tool for the Automated and Precise Analysis of Liver Tumors

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep learning-driven tool for the precise and completely automated detection and monitoring of liver tumors (hepatocellular carcinoma). Results of this work have been published as an open access article in Cell Reports Medicine.

Medical images including computed tomography (CT) scans, provide professionals in oncology with essential information for cancer detection, treatment planning, and response evaluation.

"However, the precise delineation of tumors for volume analysis - tumor contouring - poses practical challenges and often causes a bottleneck in research projects and clinical applications involving volumetric disease assessment. This task is not only time consuming but also prone to variability between and among different observers," said Raquel Perez-Lopez, corresponding author of the paper.

Primary liver cancers such as hepatocellular carcinoma (HCC) are often diagnosed in advanced stages, with limited treatment options available and an unfavorable prognosis. Furthermore, the liver is a common organ for metastases originating from other primary cancer, significantly impacting treatment outcomes. Aimed at addressing these clinical challenges, VHIO investigators have developed SALSA, an AI-aided tool that works directly on medical images, automatically detecting and delineating liver tumors, both primary and metastatic.

"For the development and training of SALSA, we used the existing nnU-Net segmentation method and introduced data obtained from 1598 computed tomography scans of 4908 primary or metastatic liver tumors," explained Maria Balaguer-Montero, a PhD Student of VHIO’s Radiomics Group and first author of the study.

Showing superior accuracy for cancer detection and precise quantification of tumor burden, surpassing state-of-the-art models and the radiologists’ inter-agreement, SALSA could potentially enhance cancer detection, treatment planning, and response evaluation.

"SALSA demonstrated high accuracy tumor detection with precision of over 99% at the patient level, and a lesion-by-lesion detection precision of almost 82% in the external validation cohort," added Balaguer-Montero.

"This novel deep learning-driven tool has shown precise and automated identification and delineation of liver cancer on CT images, facilitating a more precise quantification of tumor burden - a crucial factor in cancer prognosis and treatment - with no prior manual prompt requirements. Our validation across several test and external cohorts highlights SALSA’s effectiveness and reliability, matching, and often surpassing, the accuracy of expert radiologists," observed Perez-Lopez.

A key objective of VHIO’s Radiomics Groups is to develop medical imaging tools based on imaging biomarkers including tumor volume, density, and texture. Emerging technologies with artificial intelligence and machine learning techniques are rapidly advancing the field of personalized oncology by providing a more precise evaluation of treatment response in individual patients.

"Current clinical response criteria are limited. Tumor diameter is measured in 2D without considering volume and, in the case of metastases, only two tumors per organ and a maximum of five lesions per patient are evaluated," said Raquel Pérez-López.

"SALSA could be useful for the management of patients with liver cancer, enabling the measurement of parameters such as total tumor volume, density, or texture to assess response to therapy and support therapeutic decision-making to enhance patient outcomes," she concluded.

This work has been possible thanks to the support received from the CRIS Cancer Foundation, FERO Foundation, and the "la Caixa" Foundation, that provide funding for various research projects led by VHIO’s Radiomics Group.

Balaguer-Montero M, Marcos Morales A, Ligero M, Zatse C, Leiva D, Atlagich LM, Staikoglou N, Viaplana C, Monreal C, Mateo J, Hernando J, García-Álvarez A, Salvà F, Capdevila J, Elez E, Dienstmann R, Garralda E, Perez-Lopez R.
A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer.
Cell Rep Med. 2025 Apr 15;6(4):102032. doi: 10.1016/j.xcrm.2025.102032

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...