AI Tool Helps Predict Relapse of Pediatric Brain Cancer

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve care for children with brain tumors called gliomas, which are typically treatable but vary in risk of recurrence. Investigators from Mass General Brigham and collaborators at Boston Children’s Hospital and Dana-Farber/Boston Children’s Cancer and Blood Disorders Center trained deep learning algorithms to analyze sequential, post-treatment brain scans and flag patients at risk of cancer recurrence. Their results are published in The New England Journal of Medicine AI.

"Many pediatric gliomas are curable with surgery alone, but when relapses occur, they can be devastating," said corresponding author Benjamin Kann, MD, of the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham and the Department of Radiation Oncology at Brigham and Women’s Hospital. "It is very difficult to predict who may be at risk of recurrence, so patients undergo frequent follow-up with magnetic resonance (MR) imaging for many years, a process that can be stressful and burdensome for children and families. We need better tools to identify early which patients are at the highest risk of recurrence."

Studies of relatively rare diseases, like pediatric cancers, can be challenged by limited data. This study, which was funded in part by the National Institutes of Health, leveraged institutional partnerships across the country to collect nearly 4,000 MR scans from 715 pediatric patients. To maximize what AI could “learn” from a patient's brain scans -  and more accurately predict recurrence - the researchers employed a technique called temporal learning, which trains the model to synthesize findings from multiple brain scans taken over the course of several months post-surgery.

Typically, AI models for medical imaging are trained to draw conclusions from single scans; with temporal learning, which has not previously been used for medical imaging AI research, images acquired over time inform the algorithm’s prediction of cancer recurrence. To develop the temporal learning model, the researchers first trained the model to sequence a patient’s post-surgery MR scans in chronological order so that the model could learn to recognize subtle changes. From there, the researchers fine-tuned the model to correctly associate changes with subsequent cancer recurrence, where appropriate.

Ultimately, the researchers found that the temporal learning model predicted recurrence of either low- or high-grade glioma by one-year post-treatment, with an accuracy of 75-89 percent - substantially better than the accuracy associated with predictions based on single images, which they found to be roughly 50 percent (no better than chance). Providing the AI with images from more timepoints post-treatment increased the model’s prediction accuracy, but only four to six images were required before this improvement plateaued.

The researchers caution that further validation across additional settings is necessary prior to clinical application. Ultimately, they hope to launch clinical trials to see if AI-informed risk predictions can result in improvements to care - whether by reducing imaging frequency for the lowest-risk patients or by preemptively treating high-risk patients with targeted adjuvant therapies.

"We have shown that AI is capable of effectively analyzing and making predictions from multiple images, not just single scans," said first author Divyanshu Tak, MS, of the AIM Program at Mass General Brigham and the Department of Radiation Oncology at the Brigham. "This technique may be applied in many settings where patients get serial, longitudinal imaging, and we’re excited to see what this project will inspire."

Tak D, Garomsa BA, Zapaishchykova A, Ye Z, Vajapeyam S, Mahootiha M, Climent Pardo JC, Smith C, Familiar AM, Chaunzwa T, Liu KX, Prabhu S, Bandopadhayay P, Nabavizadeh A, Mueller S, Aerts HJ, Haas-Kogan D, Poussaint TY, Kann BH.
Longitudinal risk prediction for pediatric glioma with temporal deep learning.
NEJM AI, 2025. doi: 10.1056/AIoa2400703

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...