AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a challenge. If the tissue growing over the stent develops irregularly - either becoming too thick or forming deposits - it can lead to complications, such as re-narrowing or occlusion of the blood vessel. Currently, analyzing these healing patterns in intravascular optical coherence tomography (OCT) images is time-consuming and impracticable for routine clinical practice.

A research team from Helmholtz Munich and the TUM University Hospital has now developed DeepNeo, an artificial intelligence (AI) algorithm that can automatically assess stent healing in OCT images. DeepNeo differentiates between different healing patterns with an accuracy comparable to clinical experts - but in a fraction of the time. The AI tool also provides precise measurements, e.g. regarding tissue thickness and stent coverage, offering valuable insights for patient management.

"With DeepNeo, we can achieve an automated, standardized, and highly accurate analysis of stent and vascular healing that was previously only possible through extensive manual effort," says Valentin Koch, first author of the study introducing the algorithm. "DeepNeo is as good as a doctor, but much faster."

To train DeepNeo, researchers used 1,148 OCT images from 92 patient scans, manually annotated to classify different types of tissue growth. They then tested the AI algorithm in an animal model, where it correctly identified unhealthy tissue in 87 percent of cases when compared to detailed laboratory analysis, the current gold standard. When analyzing human scans, DeepNeo also demonstrated high precision, closely matching expert assessments.

"DeepNeo demonstrates how machine learning can support clinicians in making quicker, more informed treatment decisions. The next step is now to effectively integrate AI algorithms like DeepNeo into clinical practice," explains Dr. Carsten Marr, Director at the Institute of AI for Health at Helmholtz Munich. His colleague Prof. Julia Schnabel, who leads the Institute of Machine Learning in Biomedical Imaging and is Professor of Computational Imaging and AI in Medicine at TUM, envisions DeepNeo as part of an AI-powered healthcare system that could offer unprecedented certainty for clinical decision-making.

The project has received a Helmholtz Innovation Grant, and a patent application has been filed. Ascenion, technology transfer partner in the life sciences, is supporting the DeepNeo team in identifying potential industry partners. "DeepNeo facilitates and standardizes OCT imaging assessment after stent implantation and thus improves clinical decision-making," say PD Dr. med. Philipp Nicol and Prof. Dr. med. Michael Joner, cardiologists at the TUM University Hospital, who led the project from the clinical side. "This has the potential to not only reduce healthcare costs but pave the way for more effective and personalized cardiovascular treatments."

Koch V, Holmberg O, Blum E, Sancar E, Aytekin A, Seguchi M, Xhepa E, Wiebe J, Cassese S, Kufner S, Kessler T, Sager H, Voll F, Rheude T, Lenz T, Kastrati A, Schunkert H, Schnabel JA, Joner M, Marr C, Nicol P.
Deep learning model DeepNeo predicts neointimal tissue characterization using optical coherence tomography.
Commun Med (Lond). 2025 Apr 17;5(1):124. doi: 10.1038/s43856-025-00835-5

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...