Detecting Lung Cancer 4 Months Earlier at the GP Using AI

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able to simply identify patients during a consultation with an algorithm created by researchers at Amsterdam UMC based on the data of more than half a million patients. The results of the study were published today in the British Journal of General Practice.

The algorithm looks at all medical information from general practice including, the often for AI complicated, unstructured notes that a GP has made over the years. "The algorithm picks up predictive signals from patients’ medical history. With this, the algorithm then identifies a large proportion of these patients up to 4 months earlier than is currently the case," says Martijn Schut, Professor of Translational Artificial Intelligence at Amsterdam UMC.

Other studies and algorithms used predefined and coded variables, such as the variables 'smoking' or 'coughing up blood'. "The GP's notes contain information about the history of the patients with which we can detect patients with cancer much earlier thanks to the algorithm," says Ameen Abu Hanna, professor of Clinical Information Science at Amsterdam UMC. Further research must show which particular fragments the algorithm uses in order to actually be able to use it in practice.

This method may also offer relief for other types of cancer, which are often only found in an advanced stage, such as pancreatic, stomach or ovarian cancer. And for the patient, survival and quality of life are better and the costs are lower. "Now many patients are diagnosed with lung cancer in an advanced stage, 3 or 4, which means that 80% of patients often die within a year. Previous research indicates that receiving a diagnosis four weeks earlier already has a noticeable effect on the forecast. Four months is therefore probably a very relevant gain," adds Henk van Weert, emeritus professor of General Practice.

Compared to national screening programmes; the algorithm generates fewer false positives is lower and the selection can simply take place during the consultation. Lung cancer remains one of the most common cancers and, despite advances in treatment, still has a poor prognosis. The 5-year mortality rate is above 80%. Previous research indicated a significant increase in survival when treatment started 4 weeks earlier. With the authors' method, the majority (62%) of patients with lung cancer could be referred 4 months earlier. This makes a significant difference in costs. However, the method still needs to be validated in different countries and healthcare systems.

The files of 525,526 patients were analysed (from four academic GP networks in Amsterdam, Utrecht and Groningen), of which 2,386 were diagnosed with lung cancer. The diagnoses were validated using the Dutch Cancer Registry, and both structured and free text data were used to predict the diagnosis of lung cancer 5 months before diagnosis (4 months before referral).

Schut MC, Luik TT, Vagliano I, Rios M, Helsper CW, van Asselt KM, de Wit N, Abu-Hanna A, van Weert HC.
Artificial intelligence for early detection of lung cancer in GPs' clinical notes: a retrospective observational cohort study.
Br J Gen Pract. 2025 May 2;75(754):e316-e322. doi: 10.3399/BJGP.2023.0489

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...