Detecting Lung Cancer 4 Months Earlier at the GP Using AI

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able to simply identify patients during a consultation with an algorithm created by researchers at Amsterdam UMC based on the data of more than half a million patients. The results of the study were published today in the British Journal of General Practice.

The algorithm looks at all medical information from general practice including, the often for AI complicated, unstructured notes that a GP has made over the years. "The algorithm picks up predictive signals from patients’ medical history. With this, the algorithm then identifies a large proportion of these patients up to 4 months earlier than is currently the case," says Martijn Schut, Professor of Translational Artificial Intelligence at Amsterdam UMC.

Other studies and algorithms used predefined and coded variables, such as the variables 'smoking' or 'coughing up blood'. "The GP's notes contain information about the history of the patients with which we can detect patients with cancer much earlier thanks to the algorithm," says Ameen Abu Hanna, professor of Clinical Information Science at Amsterdam UMC. Further research must show which particular fragments the algorithm uses in order to actually be able to use it in practice.

This method may also offer relief for other types of cancer, which are often only found in an advanced stage, such as pancreatic, stomach or ovarian cancer. And for the patient, survival and quality of life are better and the costs are lower. "Now many patients are diagnosed with lung cancer in an advanced stage, 3 or 4, which means that 80% of patients often die within a year. Previous research indicates that receiving a diagnosis four weeks earlier already has a noticeable effect on the forecast. Four months is therefore probably a very relevant gain," adds Henk van Weert, emeritus professor of General Practice.

Compared to national screening programmes; the algorithm generates fewer false positives is lower and the selection can simply take place during the consultation. Lung cancer remains one of the most common cancers and, despite advances in treatment, still has a poor prognosis. The 5-year mortality rate is above 80%. Previous research indicated a significant increase in survival when treatment started 4 weeks earlier. With the authors' method, the majority (62%) of patients with lung cancer could be referred 4 months earlier. This makes a significant difference in costs. However, the method still needs to be validated in different countries and healthcare systems.

The files of 525,526 patients were analysed (from four academic GP networks in Amsterdam, Utrecht and Groningen), of which 2,386 were diagnosed with lung cancer. The diagnoses were validated using the Dutch Cancer Registry, and both structured and free text data were used to predict the diagnosis of lung cancer 5 months before diagnosis (4 months before referral).

Schut MC, Luik TT, Vagliano I, Rios M, Helsper CW, van Asselt KM, de Wit N, Abu-Hanna A, van Weert HC.
Artificial intelligence for early detection of lung cancer in GPs' clinical notes: a retrospective observational cohort study.
Br J Gen Pract. 2025 May 2;75(754):e316-e322. doi: 10.3399/BJGP.2023.0489

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...