Detecting Lung Cancer 4 Months Earlier at the GP Using AI

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able to simply identify patients during a consultation with an algorithm created by researchers at Amsterdam UMC based on the data of more than half a million patients. The results of the study were published today in the British Journal of General Practice.

The algorithm looks at all medical information from general practice including, the often for AI complicated, unstructured notes that a GP has made over the years. "The algorithm picks up predictive signals from patients’ medical history. With this, the algorithm then identifies a large proportion of these patients up to 4 months earlier than is currently the case," says Martijn Schut, Professor of Translational Artificial Intelligence at Amsterdam UMC.

Other studies and algorithms used predefined and coded variables, such as the variables 'smoking' or 'coughing up blood'. "The GP's notes contain information about the history of the patients with which we can detect patients with cancer much earlier thanks to the algorithm," says Ameen Abu Hanna, professor of Clinical Information Science at Amsterdam UMC. Further research must show which particular fragments the algorithm uses in order to actually be able to use it in practice.

This method may also offer relief for other types of cancer, which are often only found in an advanced stage, such as pancreatic, stomach or ovarian cancer. And for the patient, survival and quality of life are better and the costs are lower. "Now many patients are diagnosed with lung cancer in an advanced stage, 3 or 4, which means that 80% of patients often die within a year. Previous research indicates that receiving a diagnosis four weeks earlier already has a noticeable effect on the forecast. Four months is therefore probably a very relevant gain," adds Henk van Weert, emeritus professor of General Practice.

Compared to national screening programmes; the algorithm generates fewer false positives is lower and the selection can simply take place during the consultation. Lung cancer remains one of the most common cancers and, despite advances in treatment, still has a poor prognosis. The 5-year mortality rate is above 80%. Previous research indicated a significant increase in survival when treatment started 4 weeks earlier. With the authors' method, the majority (62%) of patients with lung cancer could be referred 4 months earlier. This makes a significant difference in costs. However, the method still needs to be validated in different countries and healthcare systems.

The files of 525,526 patients were analysed (from four academic GP networks in Amsterdam, Utrecht and Groningen), of which 2,386 were diagnosed with lung cancer. The diagnoses were validated using the Dutch Cancer Registry, and both structured and free text data were used to predict the diagnosis of lung cancer 5 months before diagnosis (4 months before referral).

Schut MC, Luik TT, Vagliano I, Rios M, Helsper CW, van Asselt KM, de Wit N, Abu-Hanna A, van Weert HC.
Artificial intelligence for early detection of lung cancer in GPs' clinical notes: a retrospective observational cohort study.
Br J Gen Pract. 2025 May 2;75(754):e316-e322. doi: 10.3399/BJGP.2023.0489

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Detecting Lung Cancer 4 Months Earlier a…

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

An AI Tool Grounded in Evidence-Based Me…

A powerful clinical artificial intelligence tool developed by University at Buffalo biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...