New System for the Early Detection of Autism

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The system has achieved an accuracy of over 85%, thus surpassing traditional methods of detecting autism in early childhood, which are usually based on psychological tests and interviews carried out manually. The results of the work of the UPV team have been published in the Expert Systems with Applications journal.

In the study, the team from the Human-Tech Institute analysed the movements of children performing multiple tasks in virtual reality to determine which artificial intelligence technique is most appropriate for identifying ASD.

"The use of virtual reality allows us to use recognisable environments that generate realistic and authentic responses, imitating how children interact in their daily lives. This is a significant improvement over laboratory tests, in which responses are often artificial. With virtual reality, we can study more genuine reactions and better understand the symptoms of autism," says Mariano Alcañiz, director of the Human-Tech Institute at the UPV.

The virtual system consists of projecting, on the walls of a room or a large-format screen, a simulated environment in which the child's image is integrated while performing multiple tasks, captured by a camera that analyses their movements.

"This method standardises the detection of autism by analysing biomarkers related to behaviour, motor activity and gaze direction. Our system only requires a large screen and a type of camera that is already on the market and is cheaper than the usual test-based evaluation method. Without doubt, it would facilitate access to diagnosis as it could be included in any early intervention space," emphasises Mariano Alcañiz.

On the other hand, as explained by the researcher Alberto Altozano, who developed the AI model together with Professor Javier Marín, taking advantage of the experience acquired in the analysis of motor data, the UPV team compared traditional AI techniques with an innovative deep learning model.

"The results reveal that the proposed new model can identify ASD with greater precision and in a greater number of tasks within the VR experience," says Altozano. Once the child's movements during the virtual experience have been automatically processed, the system establishes a diagnosis that, according to those responsible for the study, improves both the accuracy and the efficiency of conventional techniques.

Over the last eight years, the Human-Tech Institute of the UPV team has worked on perfecting the early detection of ASD, collaborating with the Red Cenit cognitive development centre, and developing and validating the semi-immersive system.

Within this framework, the researcher Eleonora Minissi recently presented her doctoral thesis, in which not only was the virtual reality system validated through studies with autistic children, but also the effectiveness of the various biomarkers measured during the virtual experience was compared. Her research highlights that, despite the growing interest in social-visual attention in ASD, atypical motor patterns have received less diagnostic attention. The researcher concludes that the "ease with which this data can be collected and its high effectiveness in detecting autism make the motor activity a promising biomarker."

In addition, the latest results of the work of the Human-Tech Institute team suggest that the new AI can be adapted and trained to analyse the movements of ASD patients in other tasks. "This opens the door to future explorations of the motor symptomatology of autism such as: what are the motor characteristics of autistic children when walking or talking?" adds Mariano Alcañiz.

Alberto Altozano, Maria Eleonora Minissi, Mariano Alcañiz, Javier Marín-Morales.
Introducing 3DCNN ResNets for ASD full-body kinematic assessment: A comparison with hand-crafted features.
Expert Systems with Applications, 2025. doi: 10.1016/j.eswa.2024.126295

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...