New System for the Early Detection of Autism

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The system has achieved an accuracy of over 85%, thus surpassing traditional methods of detecting autism in early childhood, which are usually based on psychological tests and interviews carried out manually. The results of the work of the UPV team have been published in the Expert Systems with Applications journal.

In the study, the team from the Human-Tech Institute analysed the movements of children performing multiple tasks in virtual reality to determine which artificial intelligence technique is most appropriate for identifying ASD.

"The use of virtual reality allows us to use recognisable environments that generate realistic and authentic responses, imitating how children interact in their daily lives. This is a significant improvement over laboratory tests, in which responses are often artificial. With virtual reality, we can study more genuine reactions and better understand the symptoms of autism," says Mariano Alcañiz, director of the Human-Tech Institute at the UPV.

The virtual system consists of projecting, on the walls of a room or a large-format screen, a simulated environment in which the child's image is integrated while performing multiple tasks, captured by a camera that analyses their movements.

"This method standardises the detection of autism by analysing biomarkers related to behaviour, motor activity and gaze direction. Our system only requires a large screen and a type of camera that is already on the market and is cheaper than the usual test-based evaluation method. Without doubt, it would facilitate access to diagnosis as it could be included in any early intervention space," emphasises Mariano Alcañiz.

On the other hand, as explained by the researcher Alberto Altozano, who developed the AI model together with Professor Javier Marín, taking advantage of the experience acquired in the analysis of motor data, the UPV team compared traditional AI techniques with an innovative deep learning model.

"The results reveal that the proposed new model can identify ASD with greater precision and in a greater number of tasks within the VR experience," says Altozano. Once the child's movements during the virtual experience have been automatically processed, the system establishes a diagnosis that, according to those responsible for the study, improves both the accuracy and the efficiency of conventional techniques.

Over the last eight years, the Human-Tech Institute of the UPV team has worked on perfecting the early detection of ASD, collaborating with the Red Cenit cognitive development centre, and developing and validating the semi-immersive system.

Within this framework, the researcher Eleonora Minissi recently presented her doctoral thesis, in which not only was the virtual reality system validated through studies with autistic children, but also the effectiveness of the various biomarkers measured during the virtual experience was compared. Her research highlights that, despite the growing interest in social-visual attention in ASD, atypical motor patterns have received less diagnostic attention. The researcher concludes that the "ease with which this data can be collected and its high effectiveness in detecting autism make the motor activity a promising biomarker."

In addition, the latest results of the work of the Human-Tech Institute team suggest that the new AI can be adapted and trained to analyse the movements of ASD patients in other tasks. "This opens the door to future explorations of the motor symptomatology of autism such as: what are the motor characteristics of autistic children when walking or talking?" adds Mariano Alcañiz.

Alberto Altozano, Maria Eleonora Minissi, Mariano Alcañiz, Javier Marín-Morales.
Introducing 3DCNN ResNets for ASD full-body kinematic assessment: A comparison with hand-crafted features.
Expert Systems with Applications, 2025. doi: 10.1016/j.eswa.2024.126295

Most Popular Now

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...