DeepSeek: The "Watson" to Doctors - from Assistance to Collaboration

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture of Experts (MoE) architecture, multimodal data fusion capabilities, and significantly reduced training costs (over 90% lower than comparable models), DeepSeek achieves performance on par with OpenAI’s GPT-4o-mini. Through cutting-edge NLP techniques, DeepSeek can rapidly and accurately extract valuable insights from massive datasets, providing users with intelligent information retrieval and analytical solutions. These capabilities unlock new possibilities in healthcare, offering efficient support to both doctors and patients.

In the medical field, clinicians are akin to the legendary detective Sherlock Holmes, while DeepSeek plays the role of "John Watson" - not just an assistant, but also a complement to their thinking and a bridge to humanized care. With its powerful data analysis and reasoning capabilities, DeepSeek helps doctors identify potential “blind spots”, provides comprehensive diagnostic recommendations, optimizes doctor-patient communication, and enhances medical efficiency. Specifically, DeepSeek offers the following benefits: (I) supplementing professional knowledge: through deep learning and multimodal data processing, DeepSeek delivers big data-driven insights, enabling doctors to better understand complex medical conditions. (II) Humanizing healthcare interactions: by enhancing patient education and doctor-patient communication, DeepSeek facilitates more effective interactions, improving the overall healthcare experience. (III) Identifying blind spots: much like Watson, who is often humorously credited with “spotting the blind spots”, DeepSeek’s comprehensive algorithms help doctors uncover details that might otherwise be overlooked. For instance, in diagnosing rare diseases or analyzing complex cases, DeepSeek can identify potential disease features or risk factors, offering doctors a supplementary perspective. (IV) Documentation and organization: just as Watson documented Holmes’ deductive processes for posterity, DeepSeek generates medical record templates and follow-up plans, helping doctors efficiently manage patient information while ensuring data integrity and traceability. Thus, DeepSeek is not merely an intelligent assistant but a collaborative partner in medical practice.

Doctors can utilize DeepSeek for diagnostic and therapeutic assistance while ensuring information privacy protection. Hospitals can also deploy DeepSeek locally and customize its development, training AI models with real-world data to improve the accuracy of diagnoses and treatment recommendations. Below are specific application scenarios for DeepSeek in medical practice: (I) enhancing clinical decision-making efficiency: in clinical settings, doctors can input patient symptoms, test results, and other relevant information to receive diagnostic suggestions and treatment plans from DeepSeek. For instance, when dealing with complex cases, DeepSeek integrates patient medical history and the latest medical research to provide comprehensive decision support. It can also tailor personalized treatment plans based on individual patient characteristics and needs. Additionally, DeepSeek’s data collection and processing capabilities can automatically generate structured medical record drafts, significantly reducing the documentation burden on doctors. (II) Supporting research and academia: DeepSeek can rapidly retrieve the latest medical literature and clinical guidelines, assisting doctors in conducting literature reviews and analyzing research data. This enables them to identify solutions for challenging cases and even propose new scientific questions and research directions. Through human-AI collaboration, doctors can expand their cognitive boundaries, while DeepSeek's "white-box" interpretability design enhances their understanding of AI reasoning processes and facilitates learning from its insights. (III) Optimizing patient management: DeepSeek can generate personalized patient education programs, helping doctors communicate more effectively with patients and improve treatment adherence. Through its intelligent analysis, doctors can more efficiently manage patient follow-ups and rehabilitation plans, ensuring continuity and effectiveness of care.

At the same time, doctors should actively guide patients in using DeepSeek to improve healthcare efficiency and health management capabilities. This includes: (I) assisting healthcare decision-making: patients can use DeepSeek to preliminarily understand potential diseases corresponding to their symptoms, as well as relevant tests and treatment recommendations. For example, before visiting a doctor, patients can use DeepSeek to interpret lab reports and gain initial diagnostic insights. Additionally, patients can access health science knowledge through DeepSeek to enhance their health literacy and even evaluate the expertise of potential doctors and their suitability for the condition. (II) Optimizing doctor-patient communication: by using DeepSeek, patients gain a deeper understanding of their conditions, enabling more efficient communication with doctors and reducing unnecessary misunderstandings and anxiety. For instance, DeepSeek can generate condition summaries to help patients clearly describe their symptoms to doctors. It can also explain medical terminology, allowing patients to better comprehend diagnoses and treatment plans.

Despite its immense potential in healthcare applications, DeepSeek still faces several challenges that require further optimization: (I) data quality issues: the completeness and accuracy of medical data are critical factors influencing DeepSeek's effectiveness. Irregular data entry and inconsistent collection standards may lead to biases in model analysis and diagnosis. To address this, DeepSeek needs to integrate professional medical databases (such as PubMed) and incorporate more high-quality cases and information to ensure data diversity and representativeness. Additionally, data cleaning and standardization processes should be implemented to enhance data quality. (II) Algorithm stability and accuracy: when dealing with rare diseases (e.g., those with an incidence rate of <1/100,000) or complex cases, the scarcity of relevant data may prevent DeepSeek from accurately identifying disease characteristics, resulting in unreliable diagnoses. To improve performance, DeepSeek can expand training datasets for rare diseases or adopt transfer learning techniques. Furthermore, rigorous testing and validation are necessary to ensure the reliability of model updates and optimizations in clinical practice. (III) Multimodal data fusion: healthcare involves diverse data types (e.g., images, text, physiological signals), but DeepSeek still faces technical bottlenecks in multimodal data fusion, limiting its ability to integrate data effectively for comprehensive diagnostic and treatment recommendations. To overcome this, hierarchical attention mechanisms (e.g., cross-modal attention weight allocation between images and text) can be employed, along with time-series modeling to capture dynamic features of disease progression. (IV) Lack of automated information collection: currently, DeepSeek relies on user-initiated input, creating barriers to usability. To reduce user burden and improve system accessibility, an active information collection approach is needed. For example, clinical decision tree models can be introduced to develop proactive questioning capabilities during doctor-patient interactions, guiding patients to provide key information and enhancing data collection efficiency. (V) Dynamic update delays: the integration of the latest clinical guidelines and research findings often requires manual review, leading to delays of 1-3 months, which may compromise the timeliness of the model. To address this, continuous learning mechanisms should be implemented, enabling the model to dynamically incorporate the most recent data.

In summary, DeepSeek has brought significant efficiency improvements and convenience to the healthcare sector. However, its application must be integrated with professional medical knowledge and real-world scenarios to ensure safety and accuracy. Looking ahead, DeepSeek is poised to make breakthroughs in personalized medicine, telemedicine, and public health management. By continuously improving data quality, privacy protection, technical optimization, ethical and legal compliance, and industry acceptance, DeepSeek will become a reliable partner for both doctors and patients, driving the intelligent transformation of healthcare. Just as Watson grew under Holmes’ guidance, DeepSeek will continue to refine itself in medical practice, ultimately achieving the leap from assistance to collaboration.

Liang W, Chen P, Zou X, Lu X, Liu S, Yang J, Li Z, Zhong W, Zhang K, Liang Y, He J, Zhong N.
DeepSeek: the "Watson" to doctors-from assistance to collaboration.
J Thorac Dis. 2025 Feb 28;17(2):1103-1105. doi: 10.21037/jtd-2025b-03

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...