Who's to Blame When AI Makes a Medical Error?

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually worsen challenges related to error prevention and physician burnout, according to a new brief published in JAMA Health Forum.

The brief, written by researchers from the Johns Hopkins Carey Business School, Johns Hopkins Medicine, and The University of Texas at Austin McCombs School of Business, explains that there is an increasing expectation of physicians to rely on AI to minimize medical errors. However, proper laws and regulations are not yet in place to support physicians as they make AI-guided decisions, despite the fierce adoption of these technologies among health care organizations.

The researchers predict that medical liability will depend on whom society considers at fault when the technology fails or makes a mistake, subjecting physicians to an unrealistic expectation of knowing when to override or trust AI. The authors warn that such an expectation could increase the risk of burnout and even errors among physicians.

"AI was meant to ease the burden, but instead, it’s shifting liability onto physicians - forcing them to flawlessly interpret technology even its creators can’t fully explain," said Shefali Patil, visiting associate professor at the Carey Business School and associate professor at the University of Texas McCombs School of Business. "This unrealistic expectation creates hesitation and poses a direct threat to patient care."

The new brief suggests strategies for health care organizations to support physicians by shifting the focus from individual performance to organizational support and learning, which may alleviate pressure on physicians and foster a more collaborative approach to AI integration.

"Expecting physicians to perfectly understand and apply AI alone when making clinical decisions is like expecting pilots to also design their own aircraft - while they’re flying it," said Christopher Myers, associate professor and faculty director of the Center for Innovative Leadership at the Carey Business School. "To ensure AI empowers rather than exhausts physicians, health care organizations must develop support systems that help physicians calibrate when and how to use AI so they don’t need to second-guess the tools they’re using to make key decisions."

Patil SV, Myers CG, Lu-Myers Y.
Calibrating AI Reliance-A Physician's Superhuman Dilemma.
JAMA Health Forum. 2025 Mar 7;6(3):e250106. doi: 10.1001/jamahealthforum.2025.0106

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...