Research Shows AI Technology Improves Parkinson's Diagnoses

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson's, the most common type, to other movement disorders like multiple system atrophy Parkinsonian variant and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait - but possess a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.

Now, researchers at the University of Florida and the UF Health Norman Fixel Institute for Neurological Diseases have developed a new kind of software that will help clinicians differentially diagnose Parkinson’s disease and related conditions, reducing diagnostic time and increasing precision beyond 96%. The study was published recently in JAMA Neurology and was funded by the National Institutes of Health.

"In many cases, MRI manufacturers don’t communicate with each other due to marketplace competition," said David Vaillancourt, Ph.D., chair and a professor in the UF Department of Applied Physiology and Kinesiology. "They all have their own software and their own sequences. Here, we’ve developed novel software that works across all of them."

Although there is no substitute for the human element of diagnosis, even the most experienced physicians who specialize in movement disorder diagnoses can benefit from a tool to increase diagnostic efficacy between different disorders, Vaillancourt said.

The software, Automated Imaging Differentiation for Parkinsonism, or AIDP, is an automated MRI processing and machine learning software that features a noninvasive biomarker technique. Using diffusion-weighted MRI, which measures how water molecules diffuse in the brain, the team can identify where neurodegeneration is occurring. Then, the machine learning algorithm, rigorously tested against in-person clinic diagnoses, analyzes the brain scan and provides the clinician with the results, indicating one of the different types of Parkinson's.

The study was conducted across 21 sites, 19 of them in the United States and two in Canada.

"This is an instance where the innovation between technology and artificial intelligence has been proven to enhance diagnostic precision, allowing us the opportunity to further improve treatment for patients with Parkinson’s disease," said Michael Okun, M.D., medical adviser to the Parkinson's Foundation and director of the Norman Fixel Institute for Neurological Diseases at UF Health. "We look forward to seeing how this innovation can further impact the Parkinson's community and advance our shared goal of better outcomes for all."

The team's next step is obtaining approval from the U.S. Food and Drug Administration.

"This effort truly highlights the importance of interdisciplinary collaboration," said Angelos Barmpoutis, Ph.D., a professor at the Digital Worlds Institute at UF. "Thanks to the combined medical expertise, scientific expertise and technological expertise, we were able to accomplish a goal that will change the lives of countless individuals."

Vaillancourt DE, Barmpoutis A, Wu SS, DeSimone JC, Schauder M, Chen R, Parrish TB, Wang WE, Molho E, Morgan JC, Simon DK, Scott BL, Rosenthal LS, Gomperts SN, Akhtar RS, Grimes D, De Jesus S, Stover N, Bayram E, Ramirez-Zamora A, Prokop S, Fang R, Slevin JT, Kanel P, Bohnen NI, Tuite P, Aradi S, Strafella AP, Siddiqui MS, Davis AA, Huang X, Ostrem JL, Fernandez H, Litvan I, Hauser RA, Pantelyat A, McFarland NR, Xie T, Okun MS; AIDP Study Group; Leader A, Russell Á, Babcock H, White-Tong K, Hua J, Goodheart AE, Peterec EC, Poon C, Galarce MB, Thompson T, Collier AM, Cromer C, Putra N, Costello R, Yilmaz E, Mercado C, Mercado T, Fessenden A, Wagner R, Spears CC, Caswell JL, Bryants M, Kuzianik K, Ahmed Y, Bendahan N, Njoku JO, Stiebel A, Zahed H, Wang SS, Hoang PT, Seemiller J, Du G.
Automated Imaging Differentiation for Parkinsonism.
JAMA Neurol. 2025 Mar 17:e250112. doi: 10.1001/jamaneurol.2025.0112

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...