Research Shows AI Technology Improves Parkinson's Diagnoses

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson's, the most common type, to other movement disorders like multiple system atrophy Parkinsonian variant and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait - but possess a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.

Now, researchers at the University of Florida and the UF Health Norman Fixel Institute for Neurological Diseases have developed a new kind of software that will help clinicians differentially diagnose Parkinson’s disease and related conditions, reducing diagnostic time and increasing precision beyond 96%. The study was published recently in JAMA Neurology and was funded by the National Institutes of Health.

"In many cases, MRI manufacturers don’t communicate with each other due to marketplace competition," said David Vaillancourt, Ph.D., chair and a professor in the UF Department of Applied Physiology and Kinesiology. "They all have their own software and their own sequences. Here, we’ve developed novel software that works across all of them."

Although there is no substitute for the human element of diagnosis, even the most experienced physicians who specialize in movement disorder diagnoses can benefit from a tool to increase diagnostic efficacy between different disorders, Vaillancourt said.

The software, Automated Imaging Differentiation for Parkinsonism, or AIDP, is an automated MRI processing and machine learning software that features a noninvasive biomarker technique. Using diffusion-weighted MRI, which measures how water molecules diffuse in the brain, the team can identify where neurodegeneration is occurring. Then, the machine learning algorithm, rigorously tested against in-person clinic diagnoses, analyzes the brain scan and provides the clinician with the results, indicating one of the different types of Parkinson's.

The study was conducted across 21 sites, 19 of them in the United States and two in Canada.

"This is an instance where the innovation between technology and artificial intelligence has been proven to enhance diagnostic precision, allowing us the opportunity to further improve treatment for patients with Parkinson’s disease," said Michael Okun, M.D., medical adviser to the Parkinson's Foundation and director of the Norman Fixel Institute for Neurological Diseases at UF Health. "We look forward to seeing how this innovation can further impact the Parkinson's community and advance our shared goal of better outcomes for all."

The team's next step is obtaining approval from the U.S. Food and Drug Administration.

"This effort truly highlights the importance of interdisciplinary collaboration," said Angelos Barmpoutis, Ph.D., a professor at the Digital Worlds Institute at UF. "Thanks to the combined medical expertise, scientific expertise and technological expertise, we were able to accomplish a goal that will change the lives of countless individuals."

Vaillancourt DE, Barmpoutis A, Wu SS, DeSimone JC, Schauder M, Chen R, Parrish TB, Wang WE, Molho E, Morgan JC, Simon DK, Scott BL, Rosenthal LS, Gomperts SN, Akhtar RS, Grimes D, De Jesus S, Stover N, Bayram E, Ramirez-Zamora A, Prokop S, Fang R, Slevin JT, Kanel P, Bohnen NI, Tuite P, Aradi S, Strafella AP, Siddiqui MS, Davis AA, Huang X, Ostrem JL, Fernandez H, Litvan I, Hauser RA, Pantelyat A, McFarland NR, Xie T, Okun MS; AIDP Study Group; Leader A, Russell Á, Babcock H, White-Tong K, Hua J, Goodheart AE, Peterec EC, Poon C, Galarce MB, Thompson T, Collier AM, Cromer C, Putra N, Costello R, Yilmaz E, Mercado C, Mercado T, Fessenden A, Wagner R, Spears CC, Caswell JL, Bryants M, Kuzianik K, Ahmed Y, Bendahan N, Njoku JO, Stiebel A, Zahed H, Wang SS, Hoang PT, Seemiller J, Du G.
Automated Imaging Differentiation for Parkinsonism.
JAMA Neurol. 2025 Mar 17:e250112. doi: 10.1001/jamaneurol.2025.0112

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...