Research Shows AI Technology Improves Parkinson's Diagnoses

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson's, the most common type, to other movement disorders like multiple system atrophy Parkinsonian variant and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait - but possess a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.

Now, researchers at the University of Florida and the UF Health Norman Fixel Institute for Neurological Diseases have developed a new kind of software that will help clinicians differentially diagnose Parkinson’s disease and related conditions, reducing diagnostic time and increasing precision beyond 96%. The study was published recently in JAMA Neurology and was funded by the National Institutes of Health.

"In many cases, MRI manufacturers don’t communicate with each other due to marketplace competition," said David Vaillancourt, Ph.D., chair and a professor in the UF Department of Applied Physiology and Kinesiology. "They all have their own software and their own sequences. Here, we’ve developed novel software that works across all of them."

Although there is no substitute for the human element of diagnosis, even the most experienced physicians who specialize in movement disorder diagnoses can benefit from a tool to increase diagnostic efficacy between different disorders, Vaillancourt said.

The software, Automated Imaging Differentiation for Parkinsonism, or AIDP, is an automated MRI processing and machine learning software that features a noninvasive biomarker technique. Using diffusion-weighted MRI, which measures how water molecules diffuse in the brain, the team can identify where neurodegeneration is occurring. Then, the machine learning algorithm, rigorously tested against in-person clinic diagnoses, analyzes the brain scan and provides the clinician with the results, indicating one of the different types of Parkinson's.

The study was conducted across 21 sites, 19 of them in the United States and two in Canada.

"This is an instance where the innovation between technology and artificial intelligence has been proven to enhance diagnostic precision, allowing us the opportunity to further improve treatment for patients with Parkinson’s disease," said Michael Okun, M.D., medical adviser to the Parkinson's Foundation and director of the Norman Fixel Institute for Neurological Diseases at UF Health. "We look forward to seeing how this innovation can further impact the Parkinson's community and advance our shared goal of better outcomes for all."

The team's next step is obtaining approval from the U.S. Food and Drug Administration.

"This effort truly highlights the importance of interdisciplinary collaboration," said Angelos Barmpoutis, Ph.D., a professor at the Digital Worlds Institute at UF. "Thanks to the combined medical expertise, scientific expertise and technological expertise, we were able to accomplish a goal that will change the lives of countless individuals."

Vaillancourt DE, Barmpoutis A, Wu SS, DeSimone JC, Schauder M, Chen R, Parrish TB, Wang WE, Molho E, Morgan JC, Simon DK, Scott BL, Rosenthal LS, Gomperts SN, Akhtar RS, Grimes D, De Jesus S, Stover N, Bayram E, Ramirez-Zamora A, Prokop S, Fang R, Slevin JT, Kanel P, Bohnen NI, Tuite P, Aradi S, Strafella AP, Siddiqui MS, Davis AA, Huang X, Ostrem JL, Fernandez H, Litvan I, Hauser RA, Pantelyat A, McFarland NR, Xie T, Okun MS; AIDP Study Group; Leader A, Russell Á, Babcock H, White-Tong K, Hua J, Goodheart AE, Peterec EC, Poon C, Galarce MB, Thompson T, Collier AM, Cromer C, Putra N, Costello R, Yilmaz E, Mercado C, Mercado T, Fessenden A, Wagner R, Spears CC, Caswell JL, Bryants M, Kuzianik K, Ahmed Y, Bendahan N, Njoku JO, Stiebel A, Zahed H, Wang SS, Hoang PT, Seemiller J, Du G.
Automated Imaging Differentiation for Parkinsonism.
JAMA Neurol. 2025 Mar 17:e250112. doi: 10.1001/jamaneurol.2025.0112

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...