Research Shows AI Technology Improves Parkinson's Diagnoses

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson's, the most common type, to other movement disorders like multiple system atrophy Parkinsonian variant and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait - but possess a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.

Now, researchers at the University of Florida and the UF Health Norman Fixel Institute for Neurological Diseases have developed a new kind of software that will help clinicians differentially diagnose Parkinson’s disease and related conditions, reducing diagnostic time and increasing precision beyond 96%. The study was published recently in JAMA Neurology and was funded by the National Institutes of Health.

"In many cases, MRI manufacturers don’t communicate with each other due to marketplace competition," said David Vaillancourt, Ph.D., chair and a professor in the UF Department of Applied Physiology and Kinesiology. "They all have their own software and their own sequences. Here, we’ve developed novel software that works across all of them."

Although there is no substitute for the human element of diagnosis, even the most experienced physicians who specialize in movement disorder diagnoses can benefit from a tool to increase diagnostic efficacy between different disorders, Vaillancourt said.

The software, Automated Imaging Differentiation for Parkinsonism, or AIDP, is an automated MRI processing and machine learning software that features a noninvasive biomarker technique. Using diffusion-weighted MRI, which measures how water molecules diffuse in the brain, the team can identify where neurodegeneration is occurring. Then, the machine learning algorithm, rigorously tested against in-person clinic diagnoses, analyzes the brain scan and provides the clinician with the results, indicating one of the different types of Parkinson's.

The study was conducted across 21 sites, 19 of them in the United States and two in Canada.

"This is an instance where the innovation between technology and artificial intelligence has been proven to enhance diagnostic precision, allowing us the opportunity to further improve treatment for patients with Parkinson’s disease," said Michael Okun, M.D., medical adviser to the Parkinson's Foundation and director of the Norman Fixel Institute for Neurological Diseases at UF Health. "We look forward to seeing how this innovation can further impact the Parkinson's community and advance our shared goal of better outcomes for all."

The team's next step is obtaining approval from the U.S. Food and Drug Administration.

"This effort truly highlights the importance of interdisciplinary collaboration," said Angelos Barmpoutis, Ph.D., a professor at the Digital Worlds Institute at UF. "Thanks to the combined medical expertise, scientific expertise and technological expertise, we were able to accomplish a goal that will change the lives of countless individuals."

Vaillancourt DE, Barmpoutis A, Wu SS, DeSimone JC, Schauder M, Chen R, Parrish TB, Wang WE, Molho E, Morgan JC, Simon DK, Scott BL, Rosenthal LS, Gomperts SN, Akhtar RS, Grimes D, De Jesus S, Stover N, Bayram E, Ramirez-Zamora A, Prokop S, Fang R, Slevin JT, Kanel P, Bohnen NI, Tuite P, Aradi S, Strafella AP, Siddiqui MS, Davis AA, Huang X, Ostrem JL, Fernandez H, Litvan I, Hauser RA, Pantelyat A, McFarland NR, Xie T, Okun MS; AIDP Study Group; Leader A, Russell Á, Babcock H, White-Tong K, Hua J, Goodheart AE, Peterec EC, Poon C, Galarce MB, Thompson T, Collier AM, Cromer C, Putra N, Costello R, Yilmaz E, Mercado C, Mercado T, Fessenden A, Wagner R, Spears CC, Caswell JL, Bryants M, Kuzianik K, Ahmed Y, Bendahan N, Njoku JO, Stiebel A, Zahed H, Wang SS, Hoang PT, Seemiller J, Du G.
Automated Imaging Differentiation for Parkinsonism.
JAMA Neurol. 2025 Mar 17:e250112. doi: 10.1001/jamaneurol.2025.0112

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...