New AI Tool Accelerates Disease Treatments

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by identifying not just which patient populations may benefit but also how the drugs work inside cells.

The researchers have demonstrated the tool's potential by identifying a promising candidate to prevent heart failure, a leading cause of death in the United States and around the world.

The new AI tool called LogiRx, can predict how drugs will affect biological processes in the body, helping scientists understand the effects the drugs will have other than their original purpose. For example, the researchers found that the antidepressant escitalopram, sold as Lexapro, may prevent harmful changes in the heart that lead to heart failure, a condition that causes almost half of all cardiovascular deaths in the United States.

"AI needs to move from detecting patterns to generating understanding," said UVA's Jeffrey J. Saucerman. PhD. "Our LogiRx tool helps us identify not just which drugs can be repurposed for heart disease but how they work in the heart."

Heart failure kills more than 400,000 Americans every year. One of its hallmarks is the overgrowth of cells that thicken the heart muscle and prevent the organ from pumping blood as it should. This is known as cardiac hypertrophy.

Saucerman and his team, led by PhD student Taylor Eggertsen, wanted to see if LogiRx could identify drugs with the potential to prevent cardiac hypertrophy and, ultimately, head off heart failure. They used the tool to evaluate 62 drugs that had been previously identified as promising candidates for the task. LogiRx was able to predict "off-target" effects for seven of these drugs that could help prevent harmful cellular hypertrophy, which were confirmed in cells for two of the drugs.

The scientists then evaluated LogiRx’s predictions by doing lab tests and by looking at outcomes in patients taking the drugs. The latter revealed that patients taking escitalopram were significantly less likely to develop cardiac hypertrophy.

"LogiRx identifies unexpected new uses for old drugs that are already shown to be safe in humans," said Eggertsen, in UVA's Department of Biomedical Engineering, a joint program of the School of Medicine and School of Engineering. "This tool can help researchers explore new patient populations that could benefit from a drug or to avoid unwanted side effects."

Additional lab research and clinical trials will be needed before doctors might start prescribing escitalopram for heart health. But Saucerman is excited about the potential of LogiRx for advancing and accelerating new treatments not just for cardiac hypertrophy but for a host of other serious medical conditions.

"AI is accelerating many aspects of drug development, but it has made less progress in providing the required understanding of how these drug work in the body," Saucerman said. "LogiRx is a step towards combining AI with existing knowledge of how cells work to find new uses for old drugs."

Eggertsen TG, Travers JG, Hardy EJ, Wolf MJ, McKinsey TA, Saucerman JJ.
Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420499122. doi: 10.1073/pnas.2420499122

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...

AI can Strengthen Pandemic Preparedness

How to identify the next dangerous virus before it spreads among people is the central question in a new Comment in The Lancet Infectious Diseases. In it, researchers discuss how...

'Future-Guided' AI Improves Se…

In the world around us, many things exist in the context of time: a bird’s path through the sky is understood as different positions over a period of time, and...

New AI Tool Scans Social Media for Hidde…

A new artificial intelligence tool can scan social media data to discover adverse events associated with consumer health products, according to a study published September 30th in the open-access journal...

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...