New AI Tool Accelerates Disease Treatments

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by identifying not just which patient populations may benefit but also how the drugs work inside cells.

The researchers have demonstrated the tool's potential by identifying a promising candidate to prevent heart failure, a leading cause of death in the United States and around the world.

The new AI tool called LogiRx, can predict how drugs will affect biological processes in the body, helping scientists understand the effects the drugs will have other than their original purpose. For example, the researchers found that the antidepressant escitalopram, sold as Lexapro, may prevent harmful changes in the heart that lead to heart failure, a condition that causes almost half of all cardiovascular deaths in the United States.

"AI needs to move from detecting patterns to generating understanding," said UVA's Jeffrey J. Saucerman. PhD. "Our LogiRx tool helps us identify not just which drugs can be repurposed for heart disease but how they work in the heart."

Heart failure kills more than 400,000 Americans every year. One of its hallmarks is the overgrowth of cells that thicken the heart muscle and prevent the organ from pumping blood as it should. This is known as cardiac hypertrophy.

Saucerman and his team, led by PhD student Taylor Eggertsen, wanted to see if LogiRx could identify drugs with the potential to prevent cardiac hypertrophy and, ultimately, head off heart failure. They used the tool to evaluate 62 drugs that had been previously identified as promising candidates for the task. LogiRx was able to predict "off-target" effects for seven of these drugs that could help prevent harmful cellular hypertrophy, which were confirmed in cells for two of the drugs.

The scientists then evaluated LogiRx’s predictions by doing lab tests and by looking at outcomes in patients taking the drugs. The latter revealed that patients taking escitalopram were significantly less likely to develop cardiac hypertrophy.

"LogiRx identifies unexpected new uses for old drugs that are already shown to be safe in humans," said Eggertsen, in UVA's Department of Biomedical Engineering, a joint program of the School of Medicine and School of Engineering. "This tool can help researchers explore new patient populations that could benefit from a drug or to avoid unwanted side effects."

Additional lab research and clinical trials will be needed before doctors might start prescribing escitalopram for heart health. But Saucerman is excited about the potential of LogiRx for advancing and accelerating new treatments not just for cardiac hypertrophy but for a host of other serious medical conditions.

"AI is accelerating many aspects of drug development, but it has made less progress in providing the required understanding of how these drug work in the body," Saucerman said. "LogiRx is a step towards combining AI with existing knowledge of how cells work to find new uses for old drugs."

Eggertsen TG, Travers JG, Hardy EJ, Wolf MJ, McKinsey TA, Saucerman JJ.
Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420499122. doi: 10.1073/pnas.2420499122

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...