AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging American population, 11% of hospital stays included ICU stays.

Artificial intelligence (AI) offers a possible solution, says Indranil Bardhan, professor of information, risk, and operations management and Charles and Elizabeth Prothro Regents Chair in Health Care Management at Texas McCombs. AI models can predict the lengths of time patients will spend in the ICU, helping hospitals better manage their beds and, ideally, cut costs.

But although AI is good at predicting length of stay, it’s not so good at describing the reasons, Bardhan says. That makes doctors less likely to trust and adopt it.

"People were mostly focused on the accuracy of prediction, and that’s an important thing," he says. "The prediction is good, but can you explain your prediction?"

In new research, Bardhan makes AI’s outputs more understandable and useful to ICU doctors, an approach called explainable artificial intelligence (XAI).

With McCombs doctoral student Tianjian Guo, Ying Ding of UT's School of Information, and Shichang Zhang of Harvard University, Bardhan designed a model and trained it on a dataset of 22,243 medical records from 2001 to 2012.

The model processes 47 different attributes of patients at the time they’re admitted, including age, gender, vital signs, medications, and diagnosis. It constructs graphs that show a patient’s probability of being discharged within seven days. The graphs also depict which attributes most influence the outcome and how they interact.

In one example, the model calculates an 8.5% likelihood of discharge within seven days. It points to a respiratory system diagnosis as the main reason, and to age and medications as secondary factors.

Running their model against other XAI models, the researchers found its predictions were just as accurate, while its explanations were more comprehensive.

To test how useful their model might be in practice, the team surveyed six physicians at Austin-area ICUs, asking them to read and evaluate samples of the model’s explanations. Four of the six said the model could improve their staffing and resource management, helping them better plan patient scheduling.

The model has one major limitation, Bardhan notes: the age of the data. In 2014, the industry’s medical coding system changed from ICD-9-CM to ICD-10-CM, adding much more detail in diagnosis coding and classification.

"If we were able to get access to more recent data, we would have loved to extend our models using that data," he says.

His model need not be limited, however, to adult ICUs. “You could extend it to pediatric ICUs and neonatal ICUs," Bardhan says. "You could use this model for emergency room settings.

"Even if you're talking about a regular hospital unit, if you want to know how much or how long a patient is likely to need a hospital bed, we can easily extend our model to that setting."

Tianjian Guo, Indranil R Bardhan, Ying Ding, Shichang Zhang.
An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research, 2024. doi: 10.1287/isre.2023.0029

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...