AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging American population, 11% of hospital stays included ICU stays.

Artificial intelligence (AI) offers a possible solution, says Indranil Bardhan, professor of information, risk, and operations management and Charles and Elizabeth Prothro Regents Chair in Health Care Management at Texas McCombs. AI models can predict the lengths of time patients will spend in the ICU, helping hospitals better manage their beds and, ideally, cut costs.

But although AI is good at predicting length of stay, it’s not so good at describing the reasons, Bardhan says. That makes doctors less likely to trust and adopt it.

"People were mostly focused on the accuracy of prediction, and that’s an important thing," he says. "The prediction is good, but can you explain your prediction?"

In new research, Bardhan makes AI’s outputs more understandable and useful to ICU doctors, an approach called explainable artificial intelligence (XAI).

With McCombs doctoral student Tianjian Guo, Ying Ding of UT's School of Information, and Shichang Zhang of Harvard University, Bardhan designed a model and trained it on a dataset of 22,243 medical records from 2001 to 2012.

The model processes 47 different attributes of patients at the time they’re admitted, including age, gender, vital signs, medications, and diagnosis. It constructs graphs that show a patient’s probability of being discharged within seven days. The graphs also depict which attributes most influence the outcome and how they interact.

In one example, the model calculates an 8.5% likelihood of discharge within seven days. It points to a respiratory system diagnosis as the main reason, and to age and medications as secondary factors.

Running their model against other XAI models, the researchers found its predictions were just as accurate, while its explanations were more comprehensive.

To test how useful their model might be in practice, the team surveyed six physicians at Austin-area ICUs, asking them to read and evaluate samples of the model’s explanations. Four of the six said the model could improve their staffing and resource management, helping them better plan patient scheduling.

The model has one major limitation, Bardhan notes: the age of the data. In 2014, the industry’s medical coding system changed from ICD-9-CM to ICD-10-CM, adding much more detail in diagnosis coding and classification.

"If we were able to get access to more recent data, we would have loved to extend our models using that data," he says.

His model need not be limited, however, to adult ICUs. “You could extend it to pediatric ICUs and neonatal ICUs," Bardhan says. "You could use this model for emergency room settings.

"Even if you're talking about a regular hospital unit, if you want to know how much or how long a patient is likely to need a hospital bed, we can easily extend our model to that setting."

Tianjian Guo, Indranil R Bardhan, Ying Ding, Shichang Zhang.
An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research, 2024. doi: 10.1287/isre.2023.0029

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...