AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging American population, 11% of hospital stays included ICU stays.

Artificial intelligence (AI) offers a possible solution, says Indranil Bardhan, professor of information, risk, and operations management and Charles and Elizabeth Prothro Regents Chair in Health Care Management at Texas McCombs. AI models can predict the lengths of time patients will spend in the ICU, helping hospitals better manage their beds and, ideally, cut costs.

But although AI is good at predicting length of stay, it’s not so good at describing the reasons, Bardhan says. That makes doctors less likely to trust and adopt it.

"People were mostly focused on the accuracy of prediction, and that’s an important thing," he says. "The prediction is good, but can you explain your prediction?"

In new research, Bardhan makes AI’s outputs more understandable and useful to ICU doctors, an approach called explainable artificial intelligence (XAI).

With McCombs doctoral student Tianjian Guo, Ying Ding of UT's School of Information, and Shichang Zhang of Harvard University, Bardhan designed a model and trained it on a dataset of 22,243 medical records from 2001 to 2012.

The model processes 47 different attributes of patients at the time they’re admitted, including age, gender, vital signs, medications, and diagnosis. It constructs graphs that show a patient’s probability of being discharged within seven days. The graphs also depict which attributes most influence the outcome and how they interact.

In one example, the model calculates an 8.5% likelihood of discharge within seven days. It points to a respiratory system diagnosis as the main reason, and to age and medications as secondary factors.

Running their model against other XAI models, the researchers found its predictions were just as accurate, while its explanations were more comprehensive.

To test how useful their model might be in practice, the team surveyed six physicians at Austin-area ICUs, asking them to read and evaluate samples of the model’s explanations. Four of the six said the model could improve their staffing and resource management, helping them better plan patient scheduling.

The model has one major limitation, Bardhan notes: the age of the data. In 2014, the industry’s medical coding system changed from ICD-9-CM to ICD-10-CM, adding much more detail in diagnosis coding and classification.

"If we were able to get access to more recent data, we would have loved to extend our models using that data," he says.

His model need not be limited, however, to adult ICUs. “You could extend it to pediatric ICUs and neonatal ICUs," Bardhan says. "You could use this model for emergency room settings.

"Even if you're talking about a regular hospital unit, if you want to know how much or how long a patient is likely to need a hospital bed, we can easily extend our model to that setting."

Tianjian Guo, Indranil R Bardhan, Ying Ding, Shichang Zhang.
An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research, 2024. doi: 10.1287/isre.2023.0029

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...