AI Model Predicting Two-Year Risk of Common Heart Disorder can Easily be Integrated into Healthcare Workflow

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study demonstrates that UNAFIED, a highly accurate artificial intelligence (AI) prediction model which uses machine learning to parse information acquired from a patient's electronic health record (EHR) to predict whether a patient has or might develop detectable AFib within the following two years, can be easily integrated into the healthcare workflow.

UNAFIED is an acronym for Undiagnosed Atrial Fibrillation prediction using Electronic health Data.

Testing implementation and performance in real world conditions, the researchers reported that physicians in a busy medical practice in the Eskenazi Health system in Indianapolis who regularly used the UNAFIED risk prediction model found it easy to use and not time consuming. Most significantly, physicians participating in the study indicated that they believed it helped improve patient care. The non-invasive, inexpensive approach provides a practical option for proactive screening of patients, especially the large number of individuals at elevated risk for AFib.

Individuals at higher risk for AFib include adults living with obesity, many types of heart disease, Type 2 diabetes or sleep apnea, as well those who are smokers or binge alcohol drinkers or have a family history of the disease.

"Unfortunately, atrial fibrillation can be silent until it's disastrous. We developed and validated this risk prediction model to find the instances where atrial fibrillation was silent but still occurring or likely to occur," said Regenstrief Institute Research Scientist Randall Grout, M.D., M.S. "The primary goals of the UNAFIED model are preventing very significant negative medical outcomes and even death.

"Using such indicators as sex, height and weight, prior diagnoses of heart or kidney disease - information already easily available to the clinician - our model performed at the leading edge. It doesn't require extra steps, making it easy for clinicians to integrate into their practice."

Dr. Grout is the first author of the UNAFIED clinical implementation study, a co-author of the national validation study and the first author of the development study. In addition to his Regenstrief appointment, Dr. Grout is a faculty member of the Indiana University School of Medicine and chief health informatics officer at Eskenazi Health.

In the study of clinical implementation, UNAFIED was integrated into the EHR system of a busy cardiology clinic, enabling the algorithm upon which UNAFIED is based to calculate the predicted risk for each patient individually. If the risk factor was found to be above a certain threshold, the model provided visual indicators to the cardiologist that the patient might have an elevated risk of undetected AFib or of developing AFib within the next two years. The workflow also provides recommendations such as performing follow-up heart rhythm and other testing as well as presenting ways to document within the EHR for higher risk or that a patient may actually be experiencing AFib, even if the condition had been previously ruled out. Respectful of professional expertise and experience, the model offers the physician the option of overriding or bypassing the prompts.

According to the Centers for Disease Control and Prevention, there are more than 454,000 hospitalizations with AFib as the primary diagnosis in the U.S. annually. The condition contributes to an estimated 158,000 deaths in the U.S. each year.

Dr. Grout notes that while the algorithm on which UNAFIED is based was built to predict undetected AFib, lessons learned from the development of this model could be employed to develop algorithms for models focused on other conditions as well as specific populations or geographic areas. While some of the predictor variables used may be the same in many or most models - for instance age of patient - others, such as a history of a certain diagnoses, could be customized for the specific disease under scrutiny.

Grout RW, Ateya M, DiRenzo B, Hart S, King C, Rajkumar J, Sporrer S, Torabi A, Walroth TA, Kovacs RJ.
Screening for undiagnosed atrial fibrillation using an electronic health record‒based clinical prediction model: clinical pilot implementation initiative.
BMC Med Inform Decis Mak. 2024 Dec 18;24(1):388. doi: 10.1186/s12911-024-02773-z

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...