AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network, this vision could soon become a reality.

Glaucoma is the leading cause of irreversible blindness in Japan and worldwide. Early detection is critical, as the disease progresses silently, slowly constricting one's peripheral field of vision. Patients often don't notice this loss of vision at first, which means that extensive and irreversible damage can occur before a patient even thinks about booking a doctor's appointment. As a result, many cases remain undiagnosed due to the limited availability of ophthalmologists and the challenges of conducting mass screenings, particularly in resource-limited regions.

"This is why we developed a new, quick, portable testing method. It analyzes multiple key indicators of glaucoma, integrates the findings, and determines the presence of the disease with unprecedented precision," explains Professor Toru Nakazawa (Tohoku University).

The AI-GS was developed by a research team led by Nakazawa and Associate Professor Parmanand Sharma at the Graduate School of Medicine (Tohoku University).

The AI-GS network was tested on a dataset of 8,000 fundus images of the back of the eye (where glaucomatous damage occurs), achieving an impressive 93.52% sensitivity at 95% specificity - a level comparable to expert ophthalmologists. Unlike traditional AI models, this system excels at detecting early-stage glaucoma, even in cases where fundus abnormalities are subtle and difficult to recognize.

A major challenge in AI-driven healthcare is its lack of interpretability - the so-called "black box" problem where it's unclear what steps the AI made to come to a conclusion. AI-GS solves this by providing numerical values for each diagnostic feature, allowing ophthalmologists to understand and verify its decision-making process. This transparency enhances trust and facilitates seamless integration into clinical practice.

Another important aspect of making practical implementation as simple as possible was size. At just 110 MB, the AI-GS network is designed for portability and efficiency. It requires minimal computational power and delivers diagnostic results in under a second.

"AI-GS brings expert-level glaucoma screening to your pocket, complementing specialist evaluations," says Associate Professor Parmanand Sharma (Tohoku University), "It can be run on a mobile device and used in all sorts of public places because of its portability. You can run screenings at train stations or even remote regions that otherwise have limited access to ophthalmologists."

"This AI technology bridges a critical gap in glaucoma detection by making specialist-level diagnostics accessible to underserved communities," remarks Professor Nakazawa, "By enabling early detection on a large scale, we have the potential to prevent blindness for millions worldwide."

With its high accuracy, AI explainability, and lightweight design, the AI-GS network represents a major breakthrough in AI-driven ophthalmology, bringing glaucoma screening out of hospitals and into everyday life. Large-scale implementation of this system could revolutionize glaucoma care, ensuring that no patient is left undiagnosed due to a lack of access to specialists.

Sharma P, Takahashi N, Ninomiya T, Sato M, Miya T, Tsuda S, Nakazawa T.
A hybrid multi model artificial intelligence approach for glaucoma screening using fundus images.
NPJ Digit Med. 2025 Feb 27;8(1):130. doi: 10.1038/s41746-025-01473-w

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...