AI Accelerates Discovery of Neurodevelopmental Disorder-Associated Genes

Researchers have developed an artificial intelligence (AI) approach that accelerates the identification of genes that contribute to neurodevelopmental conditions such as autism spectrum disorder, epilepsy and developmental delay. This new powerful computational tool can help fully characterize the genetic landscape of neurodevelopmental disorders, which is key to making accurate molecular diagnosis, elucidating disease mechanism and developing targeted therapies. The study appeared in the American Journal of Human Genetics.

"Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered," said first and co-corresponding author Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor College of Medicine and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital.

Typically, to discover new genes associated with a disease, researchers sequence the genomes of many individuals with the disorders and compare them to the genomes of people without the disorders. "We took a complementary approach," Dhindsa said. "We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders."

The researchers looked for patterns in gene expression measured at the single-cell level from the developing human brain. "We found that AI models trained solely on these expression data can robustly predict genes implicated in autism spectrum disorder, developmental delay and epilepsy. But we wanted to take this work a step further," Dhindsa said.

To enhance the models even further, the team incorporated more than 300 other biological features, including measures of how intolerant genes are to mutations, whether they interact with other known disease-associated genes and their functional roles in different biological pathways.

"These models have exceptionally high predictive value," Dhindsa said. "Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone. Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower ranking genes."

"We see these models as analytical tools that can validate genes that are beginning to emerge from sequencing studies but don’t yet have enough statistical proof of being involved in neurodevelopmental conditions," Dhindsa said. "We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility."

Dhindsa RS, Weido BA, Dhindsa JS, Shetty AJ, Sands CF, Petrovski S, Vitsios D, Zoghbi AW.
Genome-wide prediction of dominant and recessive neurodevelopmental disorder-associated genes.
Am J Hum Genet. 2025 Mar 6;112(3):693-708. doi: 10.1016/j.ajhg.2025.02.001

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...