AI Accelerates Discovery of Neurodevelopmental Disorder-Associated Genes

Researchers have developed an artificial intelligence (AI) approach that accelerates the identification of genes that contribute to neurodevelopmental conditions such as autism spectrum disorder, epilepsy and developmental delay. This new powerful computational tool can help fully characterize the genetic landscape of neurodevelopmental disorders, which is key to making accurate molecular diagnosis, elucidating disease mechanism and developing targeted therapies. The study appeared in the American Journal of Human Genetics.

"Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered," said first and co-corresponding author Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor College of Medicine and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital.

Typically, to discover new genes associated with a disease, researchers sequence the genomes of many individuals with the disorders and compare them to the genomes of people without the disorders. "We took a complementary approach," Dhindsa said. "We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders."

The researchers looked for patterns in gene expression measured at the single-cell level from the developing human brain. "We found that AI models trained solely on these expression data can robustly predict genes implicated in autism spectrum disorder, developmental delay and epilepsy. But we wanted to take this work a step further," Dhindsa said.

To enhance the models even further, the team incorporated more than 300 other biological features, including measures of how intolerant genes are to mutations, whether they interact with other known disease-associated genes and their functional roles in different biological pathways.

"These models have exceptionally high predictive value," Dhindsa said. "Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone. Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower ranking genes."

"We see these models as analytical tools that can validate genes that are beginning to emerge from sequencing studies but don’t yet have enough statistical proof of being involved in neurodevelopmental conditions," Dhindsa said. "We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility."

Dhindsa RS, Weido BA, Dhindsa JS, Shetty AJ, Sands CF, Petrovski S, Vitsios D, Zoghbi AW.
Genome-wide prediction of dominant and recessive neurodevelopmental disorder-associated genes.
Am J Hum Genet. 2025 Mar 6;112(3):693-708. doi: 10.1016/j.ajhg.2025.02.001

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...