Deep Learning to Increase Accessibility, Ease of Heart Imaging

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon emission computed tomography (SPECT), uses a radioactive tracer and special camera to provide detailed images of blood flow to the heart, helping doctors detect coronary artery disease and other cardiovascular abnormalities. However, traditional SPECT imaging requires an additional CT scan to ensure accurate results, exposing patients to more radiation and increasing costs.

A new deep learning technique developed by researchers at Washington University in St. Louis with collaborators from Cleveland Clinic and University of California Santa Barbara could transform the way heart health is monitored, making it safer and more accessible.

The method, known as CTLESS, leverages deep learning to remove the CT requirement without compromising diagnostic accuracy. The project, led by Abhinav Jha, associate professor of biomedical engineering in the McKelvey School of Engineering and of radiology at WashU Medicine Mallinckrodt institute of Radiology, was published online Nov. 25 in IEEE Transactions in Medical Imaging.

The next stage of research is for them to validate this method while working to make this tech more available to rural community hospitals. Their cost-saving technique is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities, said Jha.

SPECT imaging requires an additional CT scan for attenuation compensation (AC), which corrects for how the emitted signal weakens, or attenuates, as it moves through body tissue, potentially obscuring heart images and leading to diagnostic inaccuracies. Such CT scans are typically acquired on a SPECT/CT scanner, but many facilities do not have this CT component.

"Due to cost, complexity, equipment availability, regulatory concerns and other local factors at hospitals and remote care centers, approximately 75% of all SPECT MPI scans are performed without AC, potentially compromising the diagnostic accuracy of these scans," Jha said. “By integrating concepts in physics and deep learning, the proposed CTLESS method estimates a synthetic attenuation map that is then used for AC. Thus, CTLESS may enable a mechanism where an additional scan may not be required.”

CTLESS uses photons from the emission scan to estimate attenuation, which can then be used to enhance image quality and improve diagnostic interpretation. Jha and his collaborators evaluated the performance of CTLESS using real-world clinical data and found that their method showed comparable results to traditional attenuation compensation.

Notably, CTLESS demonstrated robust performance across different scanner models, degrees of heart damage and patient demographics. Jha noted that anatomical differences between men and women result in varying levels of attenuation in these groups and confirmed that the CTLESS method yields similar performance as traditional AC for both sexes. The performance of CTLESS was also relatively stable even as the size of the training data was reduced. All these observations make CTLESS a promising option for widespread clinical adoption following additional validation.

“Our results provide promise that in the future, a separate CT scan may not be required for performing attenuation correction in MPI SPECT. This is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities,” Jha said. “By providing the ability to perform AC without requiring a CT, the proposed CTLESS method may help boost technological health equality across the U.S. and worldwide.”

Yu Z, Rahman MA, Abbey CK, Laforest R, Siegel BA, Jha A.
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT.
IEEE Transactions in Medical Imaging, Nov. 25, 2024, doi: 10.1109/TMI.2024.3496870

Most Popular Now

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

North Cumbria Integrated Care Signs 10-Y…

North Cumbria Integrated Care NHS Foundation Trust (NCIC) has signed a long-term agreement for use of the Alcidion Miya Precision platform, to provide an electronic patient record (EPR) for the...

AI Accelerates Discovery of Neurodevelop…

Researchers have developed an artificial intelligence (AI) approach that accelerates the identification of genes that contribute to neurodevelopmental conditions such as autism spectrum disorder, epilepsy and developmental delay. This new...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...