Deep Learning to Increase Accessibility, Ease of Heart Imaging

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon emission computed tomography (SPECT), uses a radioactive tracer and special camera to provide detailed images of blood flow to the heart, helping doctors detect coronary artery disease and other cardiovascular abnormalities. However, traditional SPECT imaging requires an additional CT scan to ensure accurate results, exposing patients to more radiation and increasing costs.

A new deep learning technique developed by researchers at Washington University in St. Louis with collaborators from Cleveland Clinic and University of California Santa Barbara could transform the way heart health is monitored, making it safer and more accessible.

The method, known as CTLESS, leverages deep learning to remove the CT requirement without compromising diagnostic accuracy. The project, led by Abhinav Jha, associate professor of biomedical engineering in the McKelvey School of Engineering and of radiology at WashU Medicine Mallinckrodt institute of Radiology, was published online Nov. 25 in IEEE Transactions in Medical Imaging.

The next stage of research is for them to validate this method while working to make this tech more available to rural community hospitals. Their cost-saving technique is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities, said Jha.

SPECT imaging requires an additional CT scan for attenuation compensation (AC), which corrects for how the emitted signal weakens, or attenuates, as it moves through body tissue, potentially obscuring heart images and leading to diagnostic inaccuracies. Such CT scans are typically acquired on a SPECT/CT scanner, but many facilities do not have this CT component.

"Due to cost, complexity, equipment availability, regulatory concerns and other local factors at hospitals and remote care centers, approximately 75% of all SPECT MPI scans are performed without AC, potentially compromising the diagnostic accuracy of these scans," Jha said. “By integrating concepts in physics and deep learning, the proposed CTLESS method estimates a synthetic attenuation map that is then used for AC. Thus, CTLESS may enable a mechanism where an additional scan may not be required.”

CTLESS uses photons from the emission scan to estimate attenuation, which can then be used to enhance image quality and improve diagnostic interpretation. Jha and his collaborators evaluated the performance of CTLESS using real-world clinical data and found that their method showed comparable results to traditional attenuation compensation.

Notably, CTLESS demonstrated robust performance across different scanner models, degrees of heart damage and patient demographics. Jha noted that anatomical differences between men and women result in varying levels of attenuation in these groups and confirmed that the CTLESS method yields similar performance as traditional AC for both sexes. The performance of CTLESS was also relatively stable even as the size of the training data was reduced. All these observations make CTLESS a promising option for widespread clinical adoption following additional validation.

“Our results provide promise that in the future, a separate CT scan may not be required for performing attenuation correction in MPI SPECT. This is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities,” Jha said. “By providing the ability to perform AC without requiring a CT, the proposed CTLESS method may help boost technological health equality across the U.S. and worldwide.”

Yu Z, Rahman MA, Abbey CK, Laforest R, Siegel BA, Jha A.
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT.
IEEE Transactions in Medical Imaging, Nov. 25, 2024, doi: 10.1109/TMI.2024.3496870

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...