Deep Learning to Increase Accessibility, Ease of Heart Imaging

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon emission computed tomography (SPECT), uses a radioactive tracer and special camera to provide detailed images of blood flow to the heart, helping doctors detect coronary artery disease and other cardiovascular abnormalities. However, traditional SPECT imaging requires an additional CT scan to ensure accurate results, exposing patients to more radiation and increasing costs.

A new deep learning technique developed by researchers at Washington University in St. Louis with collaborators from Cleveland Clinic and University of California Santa Barbara could transform the way heart health is monitored, making it safer and more accessible.

The method, known as CTLESS, leverages deep learning to remove the CT requirement without compromising diagnostic accuracy. The project, led by Abhinav Jha, associate professor of biomedical engineering in the McKelvey School of Engineering and of radiology at WashU Medicine Mallinckrodt institute of Radiology, was published online Nov. 25 in IEEE Transactions in Medical Imaging.

The next stage of research is for them to validate this method while working to make this tech more available to rural community hospitals. Their cost-saving technique is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities, said Jha.

SPECT imaging requires an additional CT scan for attenuation compensation (AC), which corrects for how the emitted signal weakens, or attenuates, as it moves through body tissue, potentially obscuring heart images and leading to diagnostic inaccuracies. Such CT scans are typically acquired on a SPECT/CT scanner, but many facilities do not have this CT component.

"Due to cost, complexity, equipment availability, regulatory concerns and other local factors at hospitals and remote care centers, approximately 75% of all SPECT MPI scans are performed without AC, potentially compromising the diagnostic accuracy of these scans," Jha said. “By integrating concepts in physics and deep learning, the proposed CTLESS method estimates a synthetic attenuation map that is then used for AC. Thus, CTLESS may enable a mechanism where an additional scan may not be required.”

CTLESS uses photons from the emission scan to estimate attenuation, which can then be used to enhance image quality and improve diagnostic interpretation. Jha and his collaborators evaluated the performance of CTLESS using real-world clinical data and found that their method showed comparable results to traditional attenuation compensation.

Notably, CTLESS demonstrated robust performance across different scanner models, degrees of heart damage and patient demographics. Jha noted that anatomical differences between men and women result in varying levels of attenuation in these groups and confirmed that the CTLESS method yields similar performance as traditional AC for both sexes. The performance of CTLESS was also relatively stable even as the size of the training data was reduced. All these observations make CTLESS a promising option for widespread clinical adoption following additional validation.

“Our results provide promise that in the future, a separate CT scan may not be required for performing attenuation correction in MPI SPECT. This is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities,” Jha said. “By providing the ability to perform AC without requiring a CT, the proposed CTLESS method may help boost technological health equality across the U.S. and worldwide.”

Yu Z, Rahman MA, Abbey CK, Laforest R, Siegel BA, Jha A.
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT.
IEEE Transactions in Medical Imaging, Nov. 25, 2024, doi: 10.1109/TMI.2024.3496870

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...