AI Unlocks Genetic Clues to Personalize Cancer Treatment

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor treatments more effectively. The largest study of its kind, the research analyzed data for more than 78,000 cancer patients across 20 cancer types. Patients received immunotherapies, chemotherapies and targeted therapies.

Using advanced computational analysis, the researchers identified nearly 800 genetic changes that directly impacted survival outcomes. They also discovered 95 genes significantly associated with survival in cancers such as breast, ovarian, skin, and gastrointestinal cancers.

Building on these insights, the team developed a machine learning tool to predict how patients with advanced lung cancer might respond to immunotherapy.

"These discoveries highlight how genetic profiling can play a crucial role in personalizing cancer care," said Liu. "By understanding how different mutations influence treatment response, doctors can select the most effective therapies - potentially avoiding ineffective therapies and focusing on those most likely to help."

Published in Nature Communications, the study highlights the critical roles of genes such as TP53, CDKN2A, and CDKN2B in influencing treatment outcomes, validating these associations with real-world data.

Study co-authors are Shemra Rizzo, Lisa Wang, Nayan Chaudhary, Sophia Maund, and Sarah McGough and Ryan Copping of Genentech; Marius Rene Garmhausen of Roche; and James Zou of Stanford University.

Genetic mutations - changes in DNA - can influence how cancer develops and how a patient responds to treatment. Some mutations occur randomly, while others are inherited.

In cancer, mutations can determine whether a tumor is more aggressive or how it might respond to certain treatments. Today, genetic testing is increasingly used in cancer care to identify these mutations, allowing doctors select treatments more precisely.

For example, Patients diagnosed with non-small cell lung cancer (NSCLC) often receive genomic testing for mutations in genes like KRAS, EGFR and ALK to determine whether targeted therapies or immunotherapies might be effective.

Key findings from the study include:

  • KRAS mutations in advanced non-small cell lung cancer were linked to poorer response to a common treatment (EGFR inhibitors), suggesting alternative treatments may be needed.
  • NF1 mutations improved responses to immunotherapy and worsened responses to certain targeted therapies, highlighting their complex role in treatment.
  • PI3K pathway mutations, which regulate cell growth, had varying effects depending on cancer type, with different responses in breast, melanoma and renal cancers.
  • DNA repair pathway mutations improved immunotherapy effectiveness in lung cancer by increasing tumor instability.
  • Mutations in immune-related pathways were associated with better survival rates for lung cancer patients treated with immunotherapy, suggesting not all mutations hinder treatment success.

While cancer treatments have traditionally followed a one-size-fits-all approach, where patients with the same type of cancer receive the same standard therapies, the study underscores the importance of precision medicine, which tailors treatment based on a patient’s unique genetic makeup.

Yet while vast amounts of mutation data exist, only a small number have clinically validated treatments, limiting potential real-world impact and patient benefit. To bridge this gap, based on their findings, Liu’s team used machine learning to analyze how multiple mutations interact to influence treatment outcomes.

They developed a Random Survival Forest (RSF) model, a predictive tool designed to refine treatment recommendations for lung cancer patients. By integrating large-scale real-world data with machine learning, the model identified new mutation-treatment interactions.

"Our goal was to find patterns that might not be obvious at first glance, and then translate these insights into real-world tools that can expand access to immunotherapy for people with cancer," Lui said. "One key innovation lies in integrating huge amounts of data with advanced statistical and machine learning techniques to uncover previously unrecognized mutation-treatment interactions."

While further clinical trials are needed, Liu sees this study as an important step toward making cancer treatment more precise and personalized.

"This research shows the power of computational science in transforming complex clinical and genomic data into actionable insights," she said. "It’s deeply fulfilling to contribute to tools and knowledge that can directly improve patient care."

Liu R, Rizzo S, Wang L, Chaudhary N, Maund S, Garmhausen MR, McGough S, Copping R, Zou J.
Characterizing mutation-treatment effects using clinico-genomics data of 78,287 patients with 20 types of cancers.
Nat Commun. 2024 Dec 30;15(1):10884. doi: 10.1038/s41467-024-55251-5

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...